

 DELIVERABLE D6.3.2.9 1 (20)
 ICT SHOK Future Internet
 Phase 2, 1.6.2009 – 31.12.2010

 29.3.2011 V1.1

Public D6-3-2-9-usable-security

Deliverable D6.3.2.9
Usable security for widget sharing

Sini Ruohomaa, Olli Immonen, Marko Lehtimäki

ICT SHOK Future Internet Programme
(ICT SHOK FI)

Phase 2: 1.6.2009 – 31.12.2010

Tivit, Yritysten tutkimus- ja kehittämisrahoitus, Päätös 516/09, 29.5.2009, Dnro 560/31/09

TKK, Tutkimusrahoituspäätös 40212/09, 29.5.2009, Dnro 925/31/09

www.futureinternet.fi

www.tivit.fi

This work was supported by TEKES as part of the Future Internet programme of TIVIT (Finnish
Strategic Centre for Science, Technology and Innovation in the field of ICT).

http://www.futureinternet.fi/
http://www.tivit.fi/

 DELIVERABLE D6.3.2.9 2 (20)
 ICT SHOK Future Internet
 Phase 2, 1.6.2009 – 31.12.2010

 29.3.2011 V1.1

Public D6-3-2-9-usable-security

Executive summary / Internal release

Title: Usable security for widget sharing

Widgets, i.e. mobile applications developed by parties other than the platform
provider, are distributed through widget sharing systems. Various centralized and
distributed measures can be taken to support the user’s assessment of these
widgets’ trustworthiness and to protect the user from security and privacy threats
caused by malware. This deliverable analyzes the state of the art in implemented
approaches to widget software review, monitoring and trust models.

Content: This deliverable describes the state of the art in implemented approaches to widget
software review, monitoring and trust models, studying the best practices in the field. The
approaches are evaluated based on their feasibility, costs and security impact.

Impact: We provide an analysis of benefits and disadvantages of implemented widget and
relevant other software sharing systems from four categories: centralized software review and

certification, distributed software review, user recommendations, and runtime access control.
Our overarching research goal is to find usable, feasible and effective methods to support the
widget users’ evaluation of the trustworthiness of a widget, and to analyze and limit the risk
involved in installing and using it. Extracted best practices have been experimented on in
D6.3.2.2 (reputation system prototype), and a subset of them has been evaluated through a
user study (D6.3.2.8). Although the threat environment of personal mobile devices is rather
specialized, the findings can be applied to other software sharing environments as well.

Contact info: Sini Ruohomaa, sini.ruohomaa@cs.helsinki.fi, University of Helsinki, Department
of Computer Science; Olli Immonen, olli.immonen@nokia.com, Nokia; Marko Lehtimäki,
mzlehtim@cs.helsinki.fi, University of Helsinki, Department of Computer Science

Link: http://www.futureinternet.fi/publications/D6-3-2-9-usable-security.pdf

mailto:sini.ruohomaa@cs.helsinki.fi
mailto:olli.immonen@nokia.com
mailto:mzlehtim@cs.helsinki.fi
http://www.futureinternet.fi/publications/D6-3-2-9-usable-security.pdf

Usable security for widget sharing

Sini Ruohomaa, Olli Immonen, Marko Lehtimäki

March 31, 2011

Abstract

While mobile phone platforms have been generally tightly closed
for years, they are now quickly opening up to resemble small general-
purpose computers. The influx of third-party software, widgets, that is
not centrally reviewed or governed by the traditional rigid trust models
introduces new security risks. These risks must be addressed by the
software sharing platform on one hand, and the security-related user
interfaces in the mobile phone itself on the other hand. This article
presents the state of the art in implemented approaches to widget
software review and trust models to extract best practices in the field.

1 Introduction
Mobile phone software platforms have traditionally formed closed ecosystems,
where only software endorsed by the platform owner has been possible to
install and run on the phone. This limitation has quite effectively protected
the user from malicious third-party software, while more open environments,
such as PC operating systems, have suffered from different types of malware,
spyware and software infected with third-party viruses.

As smartphone capabilities have improved to a point where the devices
begin to resemble small general-purpose computers, the closed ecosystem has
been opened gradually. This has allowed third party software developers to
provide a broad range of applications for the users. Unfortunately, it has also
provided malware writers more direct access to user’s device (e.g. [21, 38]).

In order to distinguish between platform-provided software and these
third-party applications, we call the latter type of software widgets : small
applications for the mobile phone, with access to the phone’s resources, such
as address book, persistent storage, GPS tracking capabilities and a cam-
era. While widget software can operate purely locally, many applications are

3

based on contacting external services, such as photo sharing, instant mes-
saging or a map service. In other words, from a security review perspective,
widgets should be seen as dynamic clients to different cloud services rather
than local software with a fixed set of code defining its behaviour. In the
extreme case, similarly to the principle of Software as a Service, a widget
could change its functionality entirely by fetching code from its cloud ser-
vice dynamically. This kind of software provides extreme flexibility and is
always up-to-date, but it is also impossible to review statically, i.e. prior to
installation, for any security issues.

As the widget developers are no longer controlled by a single trusted
platform provider, the users must evaluate each widget and developer for its
trustworthiness separately. From a user’s perspective, we define a widget to
be trustworthy if it performs the task it advertises, and does not compromise
the user’s security and privacy by its operation. A widget developer, then,
is defined to be trustworthy if he/she produces trustworthy widgets. The
Widget Sharing (WiSh) project has studied methods to support a user’s
trust evaluation of widgets and widget developers, and to limit the risks of
installing and using widgets [15, 19, 20, 18, 33].

In order to support the trust evaluation of the user, we can influence two
separate environments: the widget distribution service, which is currently
still centralized and controlled by the platform provider, or the operating
platform for the widgets, running on the mobile device itself. For the purpose
of supporting trust evaluations, we assume that the user acquires all their
widgets through the widget distribution service1, i.e. the widget sharing
system.

The process of acquiring a new widget can be divided into four steps:
First, a user accesses the widget sharing system to find a widget they consider
interesting and potentially useful. Second, they make a trust decision on
whether they want to download the specific widget. If the decision was
positive, they download and install it. In the third phase, the user runs the
widget on the device, and in the fourth phase of re-evaluation, she may decide
to uninstall the widget or keep using it, and/or leave feedback on it for the
widget sharing system and the developers to use.

As widget prices are low (or nonexistent) and their installation has been
made quite simple, the investment required from a user to try a new widget
is small enough to not warrant a very thorough evaluation of whether a
widget is actually worth trying out. This reflects on the trust decision as

1While this assumption may not hold for the future or for even for current mobile
devices that have been “jailbreaked”, we expect that the availability of a high-quality
distribution service will attract the majority of users and developers, such as with the
existing Android Market, Nokia Ovi Store and Apple AppStore.

4

well: the user cannot not be expected to extend considerable effort in the
trustworthiness evaluation on the average, and any additional investment
must be justified to her. In other words, the user must be made aware of
the security and privacy risks involved in installing and running a widget
to motivate due care in making a trust decision, and in running the widget.
Our goal, therefore, is to provide usable security support for widgets, with a
focus on the widget sharing systems in particular.

The rest of the report is organized as follows: Section 2 reviews existing,
implemented solutions and the best practices that can be utilized in the
context of widget sharing. Section 3 concludes.

2 Review of solutions
We summarize existing solutions utilizing four different approaches: central-
ized software review and certification, distributed software review relying on
a trusted subset of users, user recommendations, and runtime access control.
The amount of effort extended by the widget sharing system operators dif-
fers, with the first approach setting the highest demands, and the last fully
outsourcing the task to the user and platform manufacturer. Distributed
software review relies on a trusted group of users, which must be established
and upkept for the system to work, while showing user recommendations
without filtering mainly implies a need to exert some control against spam
recommendations on the website.

2.1 Centralized software review and certification

Centralized software review and software certification are done by large, glob-
ally trusted actors in the widget sharing ecosystem. They form a monolithic
core of the trust model, and its main bottleneck, which sets high demands
on the efficiency and scalability of the review process. We provide exam-
ples from the sofware certification approach of the Symbian platform, and
centralized reviewing done in commercial widget sharing systems.

2.1.1 Symbian code signing

The Symbian platform security relies on digital signing and granting capa-
bilities to applications when they are signed [11]. Symbian code signing
represents the traditional approach of software certification: in older devices,

5

unsigned2 applications could not be installed by default, although this has
been enabled since [10].

Signed applications can be distributed through various channels. The
signatures can be verified by the software platform at installation time, so
the widget sharing system itself does not need to be trusted.

Multiple types of signing are possible. "Express signed" applications have
access to a certain range of capabilities, while excluding so-called restricted
capabilities [10]. "Certified signed" applications have access even to the
restricted capabilities, such as communication device drivers.

Signing test criteria cover such things as successful installation, starting
and stopping, no disruption to key device functionalities. They do not cover
the application functionality itself [12].

2.1.2 Reviewing in widget stores

Currently, commercial widget sharing is dominated by three stores, catering
for different platforms: Nokia Ovi Store, Apple’s App Store, and Google’s
Android Market. Ovi store and Android Market apply a combination of
reviewing and runtime access control based on install-time requests for ca-
pabilities, also known as manifests; we discuss the manifest approach further
in Section 2.4.2.

Nokia Ovi Store requires that all Symbian applications are signed [29].
This way all applications are installed without user prompts, which would be
produced by the Symbian platform for unsigned applications. Ovi publishers
need to register and pay a small fee. Ovi Store quality assurance inspects
and express signs Symbian native and Java applications for free. For certi-
fied signing, a third party testing house must be used. There is currently
no signing scheme for Symbian/S60 Web Runtime Widgets and Maemo 5
applications.

Apple App Store applications are subject to testing and approval by Apple
for basic reliability testing and other analysis [2, 40].

Android Market allows developers to post applications to the software
store without initial checking [39]. In the media, the practice has been criti-
cized for potentially leading to security issues [34]. All Android applications
are signed by their developers. In this self-signing approach, the signature
only serves as evidence that the application was provided by a certain de-
veloper, not that it has been verified by any authority. Developers need to
register to the store and pay a small registration fee.

2When an authorized signature is not available, the developer signs the software them-
selves: unsigned applications therefore contain self-signatures.

6

In the Android security architecture [35], applications run in a security
sandbox. Applications must declare permissions that they need for addi-
tional capabilities. The declaration of requested permissions is made in the
application manifest file. The system allows or disallows permission requests
based on certificates or by prompting the user. The permissions are declared
and approved at install time and are not changed after that. If a widget
distributed through the Android Market is deemed malicious and removed
from the widget sharing system, it can be remotely uninstalled from users’
devices [4] as well, although the option is not automatically applied [21].

2.1.3 Evaluation of overall approach

Benefits:

• Trusted signatures are easy to verify automatically.

• Widget distribution can be done over untrusted servers.

Downsides:

• Static code review and signing do not capture the full functionality of
cloud services.

• A centralized reviewer becomes a single bottleneck with a high through-
put; this sets high demands for the efficiency of review.

• Reviews are by necessity lightweight: they will catch broken software,
but not malicious code (e.g. [21]).

• Any updates to the widget software demand a new review and signa-
ture.

We conclude that automated code review can be a valuable tool for wid-
get developers, particularly for highlighting problem areas in code that are
difficult to directly test for (such as the energy-efficiency of the software). As
the widget sharing ecosystem has opened up, the closed model of installing
only approved software is no longer viable as the only option. Trusted mono-
lithic organizations can continue to take advantage of their market status,
however, both as high-profile widget developers and as operators of widget
sharing systems for other developers.

7

2.2 Distributed software review

In the distributed software review approach, widget reviewing is delegated
from a central actor to a network of trusted volunteer users, which can be
recruited into and removed from the trusted group dynamically. The ap-
proach is prevalent in open source software development, from which we
draw our two example cases: the Debian GNU/Linux distribution, which is
a particularly long-standing implementation of the approach, and the Maemo
Community, which has more recently applied the same principles on an open
source widget sharing system.

2.2.1 Debian GNU/Linux distribution

The Debian GNU/Linux distribution includes a full standalone desktop or
server system, from the underlying operating system to applications such
as web browsers, games or server software, integrated into a working whole;
even a power user may never have to install a piece of software on their
machine from outside the distribution set. While a base system fits on an
installation CD or DVD, the full Debian distribution contains over 29 000
software packages [7], from various different development teams. The evalu-
ation and repackaging of software into Debian installation packages alone is
an effort of over a thousand Debian developers [7]. The underlying project
is non-commercial, with a structure codified into a detailed set of policies
ranging from high-level decision-making to quality assurance [8].

Every software package included in the Debian distribution is crypto-
graphically signed by a package maintainer [16]. These maintainers are a
group of trusted users with registered public keys, and they can add software
packages to the central Debian respository. While these users also act as a
first defense against clearly malicious code through knowing what and whose
software they are submitting, they are not expected to perform a detailed
review of the software they package. They do guarantee that the software
conforms to a set of standards to ensure it works together with the rest of
the software in the distribution.

At first, a software package is placed into a repository for "unstable"
software, where early adopters and other developers can test it. If during a
certain period of time, no important bugs are filed against it or packages it
depends on, the package is passed to the "testing" repository. The testing
repository represents the next stable release, and eventually undergoes a
schedule to freeze new entries being moved into the repository, final testing
and then a release [14]. The stable release is directed at regular users, and
bugfixes are released against it as well based on any bugs reported after the

8

release. All bugs found by the developers and user community are reported
in public bug tracker systems.

Ubuntu, a Debian-based distribution, aims to make software quality in-
formation more accessible to the end user by providing star ratings and re-
views from other Ubuntu users through the package installer software [37].
This approach falls under user recommendations, and we will discuss further
examples of it below.

2.2.2 The Maemo Community

The Maemo Community [22] is an open source community with 22.000 reg-
istered members and over 900 projects developing software for and around
the Linux-based Maemo platform. The Maemo platform is mostly based on
open source code, and is used in e.g. the Nokia N810 Internet Tablet and
Nokia N900. It has been developed by Nokia in collaboration with many
open source projects, including Debian [26].

The software review process is a variant of that used in Debian [23]. First,
a user submits a project into a repository called extras-devel. Unlike incorpo-
ration to the Debian unstable repository, this step involves no review and no
backing from a trusted community member; anyone can set up the Maemo
Garage account required for access to this repository. In order to advance to
the "beta" repository, extras-testing, the software must go through a basic
automated review process, executing a number of basic sanity checks [25].

In order to advance to the stable repository, extras, the software must
pass community-based quality assurance. The advancement of the software
is determined by voting: 1) at least three members of the testers group,
somewhat comparable to Debian packagers, must vote on the software, 2) it
must gain 10 more positive votes than negative, and 3) it must have been in
the beta repository for at least 10 days. Each version of the software is voted
on separately [24].

Through the voting system, the Maemo process partially overcomes the
issue of having a smaller community and less time to build a network of trust
like the Debian packagers. Users are promoted to the tester group based
on their activity in the community, tracked through a site-wide scoring sys-
tem; the measured activities include testing, development, documentation
and discussion. New users only have access to the stable repository; using
the other two for anything but testing is strongly discouraged. The stable
repository hosts 200 applications which have passed the process [26]. The sta-
ble software can be browsed through the Maemo Application Catalog, which
presents ratings on a five-star scale and number of downloads as popularity
measures.

9

2.2.3 Evaluation of overall approach

Benefits:

• A community-based review process requires few central resources; it is
crowdsourced.

• The target user base for a new software is increased gradually: from
the technically savvy early adopters to regular end users.

• In Debian, the initial filter from dedicated, trusted maintainer users
keeps obviously malicious software out, limiting the risk of becoming
an early adopter.

• In Maemo, the voting system and reviewer promotion model can be
implemented with reasonably small and unstructured communities.

• In Maemo, activity scoring creates an incentive for users to participate
actively.

• In Maemo, the quality assurance process is partially visible in software
distribution, with issue trackers linked on the download pages.

Downsides:

• Interpreting information in a bug tracker system requires expertise.

• The review process is essentially one-way: retractions from the trusted
stable repositories are not done lightly, even if security holes are dis-
covered.

• Building a structured community like Debian’s takes time; the project
has been around since the early 1990s.

We conclude that the distributed review process seems most suitable for
a community consisting of majority of technically savvy users, such as the
Debian and Maemo user communities. It is unclear how this model might
interact with major conflicting commercial interests; reciprocity and retali-
ation have been observed in electronic marketplaces, such as eBay [30], and
sustaining reasonable expert user neutrality might become an issue in a com-
mercial widget sharing environment.

Communicating software quality information is a particularly valuable
innovation in the Maemo Community. Summarizing bugtracker information
in the widget sharing system user interface in an accessible way would support
users’ trust decisions: important factors would include whether there are
open (particularly security-relevant) issues or not, and how actively open
issues are dealt with.

10

2.3 User recommendations

User recommendations and ratings are a form of feedback on the usability
and popularity of an item. They generally do not have anything to do with
its security or privacy features, instead focusing on how the software fulfils
the functional expectations of users. The format of this feedback ranges
from textual comments to numerical feedback, such as “like/dislike” or a star
rating on a five-point scale.

When this information is automatically processed to produce recommen-
dations for potentially interesting products, it is known as collaborative fil-
tering [13]; this is a broad topic, with applications areas ranging from movie
recommendations (e.g. Movielens [28]) to web pages (e.g. Brin and Page’s
PageRank [3] for search engines, or Ultra Gleeper [31] for blog-style linking).
Recommendations can be formed implicitly as well; on e.g. the Amazon
bookstore [1], user behaviour patterns are directly translated to votes: users
considering a product are told what other customers interested in it also
bought.

In some form, user recommendations are applied by most widget sharing
sites. We discuss two cases here that were designed to operate primarily on
user recommendations, and lessons learned from them: WidSets, the precur-
sor to Nokia Ovi Store, and Curse.com, a website for distributing extension
modules for online games.

2.3.1 WidSets

Nokia WidSets was a community sharing site for AJAX applications for the
mobile phone; it was discontinued in 2009 as a part of the migration to
Ovi Store as Nokia’s main widget sharing system. The web applications in
WidSets had very limited capabilities, mostly providing optimized user inter-
faces for specific RSS feeds or other mobile web browsing, such as accessing
Wikipedia articles. WidSets could be accessed either through a web browser
or by using a specialized mobile interface.

To support users’ searching for new, interesting widgets, the site extended
the basic descriptive information on each widget with a range of popularity
measures: a counter of how many users liked or disliked the widget, the
number of users (equivalent to number of downloads) as well as a sample of
the login names of some users using the widget. Different widgets could also
be in beta or stable status, indicated with a small diamond logo, and widgets
developed by WidSets certified developers had a specially endorsed status.

In the WiSh project, Karvonen et al. conducted a usability study on the
WidSets site, and found that the recommendation information was either

11

poorly understood or underutilized [19]. Users would base their download
decision on the widget description, either its rating or number of users (de-
pending on whether they were using the website or the mobile user interface,
respectively), and the widget’s logo. The results suggest that visual ap-
pearance greatly influences users’ decisions; a similar phenomenom has been
found in the context of web site credibility [9]. Recommendation as well
as trustworthiness information should be prominently displayed in order to
catch the users’ attention. Further, users’ awareness of the underlying se-
curity issues related to possible malicious widgets and developers was very
limited; on the other hand, the widgets in question posed very little threat
as well [19].

In further usability studies conducted in the project, covering online rec-
ommendation systems including the Nokia Ovi Store [20, 18], signs were
found that users evaluating the trustworthiness of a widget there were con-
fused by the overarching Nokia brand of the store. Users expected widgets
to be trustworthy, citing their trust in Nokia; they did not seem to consider
the widget developer an independent actor. Users may be interpreting Ovi
Store like a traditional shop, which carries considerable responsibility over
the products it has chosen to sell; this interpretation is problematic from the
point of view of activating the users in making more careful trust decisions
on individual widgets in the store. More visually prominent aggregation of
widget and developer reputation information could alleviate the issue [20, 18].

2.3.2 Curse .com

Curse.com [6] is a community-based site specialized in MMO games (Mas-
sively multiplayer online game). It is hosting MMO games focused news and
forum services and has significant role as addon distributor for four MMO
games. The most popular game is WoW (World of Warcraft) with millions
of subscribers. Curse.com is one of the largest distributors for WoW addons.

Addons are small-scale applications that modify game interface and in-
troduce new functionalities to it. In this sense, addons closely resemble
smartphone widgets, but have a more limited operating environment.

Curse.com is acting only as an addon distributor. Product development,
maintenance, and criticism are done by community members. The site uses
a ranking system, where users rate addons on a scale of one to five stars.
Users can also freely comment each addon. The site keeps track of addon
update dates and supported game versions, and offers detailed information
about download rates.

The site uses a category-based sorting system, where each addon may be-
long to several categories. In addition, the developer can define free keywords

12

for addons. Based on categories and keywords, the site suggests the most
popular similar addons. While browsing an individual addon, the site also
recommends other addons generally favored by users with similar interests.

2.3.3 Evaluation of overall approach

Benefits:

• Ratings and reviews are a straightforward form of community involve-
ment, a way to contribute without requiring extensive sustained effort.

• User recommendations support the search for new widgets.

Downsides:

• User recommendation information typically measures popularity, not
trustworthiness as such.

• Developers do not form a reputation, only the software does; this be-
comes problematic particularly when the software can easily be changed.

• Users need a source of motivation for even lightweight contributing.

Recommendations have a particularly strong influence on the widget
searching phase, when users are trying to find interesting new widgets to
use. They have less weight in trustworthiness decisions. The data format and
presentation is particularly important: there are conflicting requirements be-
tween keeping the user interface simple, and providing any information that
might support the user’s decision-making.

Instead of attaching users’ experience information only to the end prod-
ucts, i.e. widgets, we expect it would be fruitful to aggregate it to the wid-
get developers. In order to present the aggregated information in a usable
way, the developers could be placed into different descriptive categories, such
as “newbie developer” (few widgets, recently created account), “established
developer” (a high number of downloads, many widgets) or “quality devel-
oper” (an established developer with consistently high ratings). For more
advanced users, the background data should preferrably be made available
when needed.

13

2.4 Runtime access control

Runtime access control is implemented in the mobile application platform,
rather than the widget sharing system. Runtime access management, in its
existing forms, disconnects the enforcement process from widget distribution;
in theory, the widget sharing system could act as an access policy sharing
system, but this is not utilized yet. The manifest approach, in turn, bridges
the distribution and runtime platforms in a way that makes it possible to
present users with knowledge of the risks of installing the widget already at
the widget sharing system, and then enforce their decisions during runtime.

2.4.1 Runtime prompts

Runtime prompts are used to query the user on granting access to a specific
resource for a given widget in a fine-grained way. A major downside of
the repeated prompts is that they interrupt the user’s workflow, and can
therefore easily become a nuisance rather than a security tool: to minimize
the disruption, users form a reflex to “click ok” on any prompts that pop
up, without reading them. This, in turn, nullifies the security effect of the
prompt.

The amount of prompting can be reduced by producing compound ac-
cess policies, such as allowing a given software access to a given resource
indefinitely or for a time period. More complex behaviour rules, such as al-
lowing access for a given type of use pattern, or interdependent access rules
like “Internet access is not allowed after accessing the address book”, may
prove more effective, but are also more challenging to configure and and
more resource-consuming to monitor. For example Cao and Iverson discuss
a set of principles on how to make policy-based access control more usable for
the end-user, and propose to implement them through a policy-configuration
wizard interface [5].

2.4.2 The manifest approach

In the manifest approach, widget installation packages must include a decla-
ration of their access needs to sensitive resources, such as Internet access or
capability to make phone calls. At runtime, it will be granted access only to
the resources it has declared to need beforehand, at installation time. The
manifest approach has been adopted in some form at least by the Nokia
Symbian platform [10, 11] and the Android security architecture [35].

The manifest approach is currently used either to prompt the user at
installation time for what kind of access they wish to allow the widget [35],

14

or also to allow a trusted third party to vouch for the widget’s use of the
particular capabilities based on a software review [11].

A particular strength of the manifest is that it moves the trust decision
about allowing access to resources from the operation of the widget to its
installation, where it is less disruptive and might therefore also receive more
attention. Using more complex specifications of software behaviour that can
be enforced at runtime has been proposed in research as well [27].

While the possibility is not currently utilized, the manifest information
could be shown to the user already when they are choosing a widget to down-
load. Combined to an automated risk analysis on the different access types,
the user could be presented with concrete examples of what kinds of threats
granting a widget this kind of access could entail. A usable presentation of
this information is challenging; users should not be overwhelmed with in-
formation they are not capable of processing, while more experienced users
could benefit from it.

The education of users about risks based on similar data has been pro-
posed by Jacobsson; instead of manifests, Jacobsson automatically analyses
End-User License Agreement (EULA) texts to acquire information about po-
tential spyware-like behaviour [17, ch. 5]. While manifests are enforced by
the operating platform, EULAs are primarily enforced by courts: developers
are motivated to point out e.g. information leaked by the software in order
to avoid lawsuit, but they are not required to present the information in a
particularly usable way. Visualization of security effects of decisions has been
discussed by Tri and Dang [36].

2.4.3 Evaluation of overall approach

Benefits:

• For runtime policies, changes in the software or missed bugs are not an
issue.

• Installation-time access to the access requirements is easier to process
than runtime requests; could support risk evaluation of installing a
widget as well.

• Visible manifests could also encourage developers to think what they
really need access to.

Downsides:

• Prompts interrupt the user’s work and tend to be ignored as a result.

15

• Enforcement requires operating system support at runtime, and comes
with a computational cost depending on the complexity of policies fol-
lowed.

• Giving too much weight to manifest-based risk analysis may make it
more attractive to produce very narrow-scoped widgets as opposed to
general-purpose tools.

Utilizing the manifest information to support the user’s risk analysis of
downloading a given widget has considerable potential, although making the
information accessible is challenging. One possibility would be to actively
recommend similar widgets, which have fewer access needs, but this may have
undesirable effects on what kinds of widgets developers are then encouraged
to make.

One possible approach to easing the usability issue in both policy-setting
needs and manifest visualization could be a grouping of commonly needed
action/access combinations to profiles. For example "photo/video sharing"
needs camera, microphone, possibly GPS and Internet access to a number of
specific services, but has no need for dialing out or sending SMSes. High-level
profiles can be provided in the user’s terminology, avoiding the less accessible
technical implementation terms.

3 Conclusion
We have presented the state of the art in supporting users’ trust decisions
on installing and using widgets. The approaches can be divided into four
categories: centralized software review and certification, distributed software
review, user recommendations and runtime access control.

The usability of these support functions is important, as all additional
effort required on the user’s part must be motivated to the user. The user
may not be able to see a connection between the access requirements of
a widget and a privacy or security threat to herself. In addition to the
minimal investment made in decision-making, users are prone to misinterpret
the information given, which further emphasises the need to apply usability
expertise in designing the user interfaces involved.

The WiSh project has implemented some of the best practices discov-
ered in this review in a prototype reputation system, keeping track of both
user experience information and expert-moderated bug reports on widgets,
and aggregating this information to produce a form of developer reputa-
tion [15, 32]. Initial user experiments on the prototype are reported in an-
other deliverable [33].

16

Acknowledgements
This research has been done in the Widget Sharing (WiSh) project, which is
a collaboration between Nokia, Helsinki Institute of Information Technology
(HIIT) and University of Helsinki. The work was supported by TEKES as
part of the Future Internet program of TIVIT (Finnish Strategic Centre for
Science, Technology and Innovation in the field of ICT).

References
[1] The Amazon store and recommendation system website (2007), http:

//www.amazon.com/

[2] Apple Inc.: App Store Review Guidelines (Mar 2011), http://
developer.apple.com/appstore/guidelines.html

[3] Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems 30, 107–117 (Apr 1998),
http://dx.doi.org/10.1016/S0169-7552(98)00110-X

[4] Cannings, R.: Exercising our remote application removal feature.
Android Developers Blog (Jun 2010), http://android-developers.
blogspot.com/2010/06/exercising-our-remote-application.html

[5] Cao, X., Iverson, L.: Intentional access management: making access
control usable for end-users. In: Proceedings of the second symposium
on Usable privacy and security (SOUPS’06). ACM (2006), http://dx.
doi.org/10.1145/1143120.1143124

[6] Curse.com website (Mar 2011), http://www.curse.com/

[7] Website of the debian operating system (Mar 2011), http://www.
debian.org/

[8] Fernández-Sanguino, J., Garbee, B., Koptein, H., Lohner, N., Lowe, W.,
Mitchell, B., Murdock, I., Schulze, M., Small, C.: A brief history of De-
bian, 2.13. Tech. rep., Debian Documentation Team (Sep 2010), http:
//www.debian.org/doc/manuals/project-history/index.en.html

[9] Fogg, B., Soohoo, C., Danielson, D., Marable, L., Stan-
ford, J., Tauber, E.R.: How do people evaluate a web
site’s credibility? Tech. rep., Stanford Persuasive Technol-
ogy Lab (Oct 2002), http://www.consumerwebwatch.org/news/
report3_credibilityresearch/stanfordPTL_abstract.htm

17

[10] Forum Nokia: Capabilities (2011), http://wiki.forum.nokia.com/
index.php/Capabilities, accessed 28 March 2011.

[11] Forum Nokia: Packaging and signing (2011), http://www.forum.
nokia.com/Distribute/Packaging_and_signing.xhtml, accessed 28
March 2011.

[12] Forum Nokia: Symbian Signed Test Criteria V4 Wiki ver-
sion (2011), http://wiki.forum.nokia.com/index.php/Symbian_
Signed_Test_Criteria_V4_Wiki_version, accessed 28 March 2011.

[13] Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative
filtering to weave an information Tapestry. Communications of the ACM
35, 61–70 (Dec 1992), http://doi.acm.org/10.1145/138859.138867

[14] González-Barahona, J.M., Ortuño Pérez, M.A., de las Heras Quirós,
P., Centeno González, J., Matellán Olivera, V.: Counting potatoes:
The size of Debian 2.2, revision 0.3a (Jan 2002), http://pascal.case.
unibz.it/retrieve/3246/counting-potatoes.html

[15] Hassinen, M., Immonen, O., Karvonen, K., Nurmi, P., Ruohomaa,
S.: Trustworthy widget sharing. Tech. Rep. 2010-3, Helsinki Insititute
of Information Technology (Dec 2010), https://www.hiit.fi/files/
admin/publications/Technical_Reports/hiit-tr-2010-3.pdf

[16] Jackson, I., Schwarz, C., et al.: Debian Policy Manual, version 3.9.1.0
(Jul 2010), http://www.debian.org/doc/debian-policy/

[17] Jacobsson, A.: Privacy and Security in Internet-Based Information Sys-
tems. Ph.D. thesis, School of Engineering, Blekinge Institute of Tech-
nology, Ronneby, Sweden (2008)

[18] Karvonen, K., Immonen, O.: Understanding online reputation informa-
tion (2011), (unpublished manuscript under submission)

[19] Karvonen, K., Kilinkaridis, T., Immonen, O.: Widsets: A usability
study of widget sharing. In: Human-Computer Interaction - Interact
2009. pp. 461–464. No. 5727 in LNCS (2009), http://dx.doi.org/10.
1007/978-3-642-03658-3_50

[20] Karvonen, K., Shibasaki, S., Nunes, S., Kaur, P., Immonen, O.: Visual
nudges for enhancing the use and produce of reputation information. In:
Proceedings of the ACM RecSys 2010 Workshops on User-Centric Eval-
uation of Recommendation systems and Their Interfaces (UCERSTI).

18

CEUR-WS.org, Barcelona, Spain (Sep 2010), http://ucersti.ieis.
tue.nl/paper1.pdf

[21] Keizer, G.: Google yanks over 50 infected apps from Android Mar-
ket. NetworkWorld (Mar 2011), http://www.networkworld.com/news/
2011/030211-google-yanks-over-50-infected.html, accessed 28
March 2011.

[22] Maemo Community website (Mar 2011), http://www.maemo.org/

[23] Maemo wiki: Extras repository process definition (Aug 2009), http://
wiki.maemo.org/Extras_repository_process_definition, accessed
28 March 2011.

[24] Maemo wiki: Extras-testing (Dec 2010), http://wiki.maemo.org/
Extras-testing, accessed 28 March 2011.

[25] Maemo wiki: Extras-devel (Feb 2011), http://wiki.maemo.org/
Extras-devel, accessed 28 March 2011.

[26] Maemo.org: The Home of the Maemo Community (Mar 2011), http:
//maemo.org/intro

[27] Massacci, F., Piessens, F., Siahaan, I.: Security-by-contract for the fu-
ture internet. In: Future Internet - FIS 2008. LNCS, vol. 5468, pp. 29–43
(2009), http://dx.doi.org/10.1007/978-3-642-00985-3_3

[28] MovieLens, a movie recommender system website (2011), http://
movielens.umn.edu/

[29] Nokia: Ovi Publisher Guide (Dec 2010), https://p.d.ovi.com/p/g/
ovistore_static/docs/Publisher_Guide.pdf

[30] Resnick, P., Zeckhauser, R.: Trust among strangers in inter-
net transactions: Empirical analysis of eBay’s reputation system.
In: The Economics of the Internet and E-Commerce. Advances
in Applied Microeconomics, vol. 11, pp. 127–157. Elsevier Science,
Amsterdam (2002), http://www.si.umich.edu/~presnick/papers/
ebayNBER/RZNBERBodegaBay.pdf

[31] Richardson, L.: The Ultra Gleeper: A recommendation engine for web
pages (Feb 2005), http://www.crummy.com/software/UltraGleeper/
IntroPaper.html

19

[32] Ruohomaa, S., Lehtimäki, M., et al.: Trustworthy widget shar-
ing (Feb 2010), http://www.futureinternet.fi/publications/
seminar_2011/wish_seminaariposteri.pdf, poster presented in the
Future Internet SHOK results seminar.

[33] Shen, Y., Nurmi, P., Ruohomaa, S., Lehtimäki, M.: D6.3.2.8: Under-
standing widget downloading preferences. Tech. rep., Tivit Future In-
ternet (Mar 2011)

[34] TechCentral.ie: Spy tool highlights Android app store security issues.
TechCentral.ie (Aug 2010), http://www.techcentral.ie/article.
aspx?id=15457

[35] The Android Developer’s Guide: Security and Permissions (Mar
2011), http://developer.android.com/guide/topics/security/
security.html, accessed 28 March 2011.

[36] Tri, D.T., Dang, T.K.: Security visualization for peer-to-peer resource
sharing applications. IJCSE 1(2), 47–55 (2009), http://arxiv.org/
abs/0912.2289

[37] Ubuntu Wiki: Software Center / Ratings And Reviews (Mar 2011),
https://wiki.ubuntu.com/SoftwareCenter/RatingsAndReviews,
accessed 28 March 2011.

[38] Vennon, T., Stroop, D.: Threat analysis of the Android Market. Tech.
rep., SMobile Systems (Jun 2010), http://globalthreatcenter.com/
wp-content/plugins/download-monitor/download.php?id=8

[39] Wikipedia: Android market. Wikipedia (English) (Mar 2011), http:
//en.wikipedia.org/wiki/Android_Market, accessed 28 March 2011.

[40] Wikipedia: App store. Wikipedia (English) (Mar 2011), http://en.
wikipedia.org/wiki/App_store, accessed 28 March 2011.

20

