
HELSINKI UNIVERSITY OF TECHNOLOGY

Faculty of Electronics, Communications, and

Automation

Department of Communications and Networking

Le Wang

Evaluation of Compression for

Energy-aware Communication in

Wireless Networks

Master’s Thesis submitted in partial fulfillment of the requirements for the

degree of Master of Science in Technology.

Espoo, May 11, 2009

Supervisor: Professor Jukka Manner

Instructor: Sebastian Siikavirta

2

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS

Author: Le Wang

Title: Evaluation of Compression for Energy-aware

Communication in Wireless Networks

Number of pages: 75 p. Date: 11th May

2009
Faculty: Faculty of Electronics, Communications, and Automation

Department: Department of Communications and Networks

Code: S-38

Supervisor: Professor Jukka Manner

Instructor: Sebastian Siikavirta

Abstract

In accordance with the development of ICT-based communication, energy efficient
communication in wireless networks is being required for reducing energy
consumption, cutting down greenhouse emissions and improving business
competitiveness. Due to significant energy consumption of transmitting data over
wireless networks, data compression techniques can be used to trade the overhead
of compression/decompression for less communication energy.

Careless and blind compression in wireless networks not only causes an expansion
of file sizes, but also wastes energy. This study aims to investigate the usages of
data compression to reduce the energy consumption in a hand-held device. By con-
ducting experiments as the methodologies, the impacts of transmission on energy
consumption are explored on wireless interfaces. Then, 9 lossless compression algo-
rithms are examined on popular Internet traffic in the view of compression ratio,
speed and consumed energy. Additionally, energy consumption of uplink, downlink
and overall system is investigated to achieve a comprehensive understanding of
compression in wireless networks. Moreover, we also discuss the relation between
file contents and wireless network status in the perspective of energy consumption
and propose proper ways to deploy compression in energy-aware communication.

I

Keywords: compression, power, energy,
awareness,

 wireless, efficiency, ratio

Language: English

II

ACKNOWLEDGEMENT

My deepest gratitude goes first and foremost to Professor Jukka Man-

ner, my supervisor, for his illuminating instructions and guidance.

Without his constant support, this thesis never comes into a reality.

Moreover, this work was a part of the Future Internet program of TIVIT

(Finnish Strategic Centre for Science, Technology and Innovation in

the field of ICT), thus, I also would like to take this chance to express

my gratitude to the support from TEKES.

Second, I would like to express my sincere thanks to a number of

people who ever offered their invaluable assistance in the preparation

of this thesis. Special appreciation is extended to Nokia for providing

the necessary hardware in this study. I also would like to thank Arto

Karppanen, Yu Xiao and Eero Sillasto, whose help and suggestions

paved a smooth way for this thesis to come into being. My

appreciation also goes to my instructor, Sebastian Siikavirta and

others who offered help.

Here, I own special thanks to my beloved girlfriend, Du, who always

supports and encourages me. So thank you my Love for being in my

life.

Finally, my thanks would go to my family for their unconditioned love

and endless support over years. Especially, this work is dedicated to

my mother for her 55th birthday and her endless love.

III

Le Wang

11.05.2009

LIST OF ACRONYMS

BMP Bitmap

BWT Burrows-Wheeler Transform

CCITT the facsimile standard, Group 3 or 4

HTML HyperText Markup Language

HSDPA High-Speed Downlink Packet Access

ICT Information and communication technologies

ITU International Telecommunication Union

JPEG Joint Photographic Experts Group

JTG Jugi’s Traffic Generator

LZ Lempel-Ziv

LZFG Lempel–Ziv–Fiala-Daniel

LZMA Lempel–Ziv–Markov chain Algorithm

LZMW Lempel–Ziv-Miller-Wegman

LZO Lempel–Ziv–Oberhumer

LZP Lempel–Ziv-PPM

LZRW Lempel–Ziv-Ross-Williams

LZS Lempel–Ziv–Stac

LZSS LZ-Storer-Szymanski

LZW Lempel–Ziv–Welch

LZY Lempel–Ziv-Yabba

MPEG Moving Picture Experts Group

MP3 MPEG-1 Audio Layer 3

MVRCA Magnalink Variable Resource Compression Algorithm

NTP Network Time Protocol

IV

PDF Portable Document Format

PGF Progressive Graphics File

PPM Prediction by partial matching

PPP Point-to-Point Protocol

QoS Quality of Service

RLE Run-Length Encoding

SHOK Strategic Centres for Science, Technology and Innovation

(Finnish acronym)

SWF Shockwave Flash

TCP Transmission Control Protocol

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

WLAN Wireless local area network

WMA Windows Media Audio

XML Extensible Markup Language

V

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. III

LIST OF ACRONYMS .. IV

TABLE OF CONTENTS .. VI

LIST OF FIGURES ... VII

LIST OF TABLES .. VIII

Chapter 1 INTRODUCTION .. 1

Chapter 2 COMPRESSION ALGORITHMS ... 7

2.1 Compression categories .. 8

2.2 Statistical Compression ... 9

2.2.1 Huffman Coding .. 10

2.2.2 Arithmetic Coding .. 12

2.2.3 Summary .. 13

2.3 Dictionary Compression ... 14

2.3.1 Static Dictionary .. 15

2.3.2 Adaptive Dictionary ... 15

2.4 Predictive Compression .. 19

2.4.1 Prediction with Partial Match .. 20

2.4.2 Burrows-Wheeler Transform ... 21

2.4.3 Context Mixing .. 22

2.6 Compression programs ... 22

2.6.1 gzip ... 23

2.6.2 lzo ... 23

2.6.3 lzma .. 24

2.6.4 ncompress .. 24

2.6.5 lzpxj .. 25

2.6.6 flzp ... 25

2.6.7 bzip2 ... 25

2.6.8 srank ... 26

2.6.9 paq9a .. 26

2.7 Summary ... 27

Chapter 3 EXPERIMENTATION SETUP ... 28

3.1 Measurement Equipment and Software .. 28

3.2 Energy Measurement Setup .. 30

3.3 Bit Rate Measurement Setup .. 32

3.4 Test Files ... 33

Chapter 4 TRANMISSION IMPACT ... 35

4.1 Packet Sizes Impact .. 36

4.2 Transmission Rate Impact ... 38

4.3 Summary ... 42

VI

Chapter 5 COMPRESSION IMPACT .. 43

5.1 Hard-to-compress Files ... 46

5.2 Compressible Files .. 50

5.3 Case Study of Web Sites ... 57

Chapter 6 CONCLUSIONS AND FUTURE WORK .. 59

REFERENCES .. 62

APPENDIX A. RESULTS OF THE EXPERIMENTS ... 66

LIST OF FIGURES

Fig 3.1 Energy measurement setup...31

Fig 3.2 Voltage fluctuations in real time...32

Fig 4.3 Consumed energy on packets with different packet lengths when sending.............................37

Fig 4.4 Consumed energy on packets with different packet length when receiving............................38

Fig 4.5 Consumed energy under different transmission intervals when sending.................................39

Fig 4.6 Consumed energy under different transmission rates when sending.......................................40

Fig 4.7 Consumed energy under different transmission intervals when receiving..............................41

Fig 4.8 Consumed energy under different transmission rates when receiving....................................42

Fig 5.9 Summary of power consumption...45

Fig 5.10 Time VS consumed energy when compressing and decompressing......................................46

Fig 5.11 Compression ratio and time of different compression programs...48

Fig 5.12 Energy required to compress and send JPG, MP3, WMA and EXE files.............................49

Fig 5.13 Energy required to receive and decompress JPG, MP3, WMA and EXE files.....................49

Fig 5.14 Total energy required to transmit JPG, MP3, WMA and EXE files......................................50

Fig 5.15 The best ratio/time of the compression programs and the corresponding ratio.....................51

Fig 5.16 Energy required to compress and decompress PDF and SWF files.......................................53

VII

Fig 5.17 Energy required to compress and send PDF and SWF files..53

Fig 5.18 Energy required to receive and decompress PDF and SWF files..54

Fig 5.19 Total energy required to transmit PDF and SWF files...54

Fig 5.20 Energy required to send BIN, HTML, BMP and XML files...56

Fig 5.21 Energy required to receive BIN, HTML, BMP and XML files...56

Fig 5.22 Total energy required to transmit BIN, HTML, BMP and XML files...................................57

LIST OF TABLES

Table 2.1 Summary of the compression programs...27

Table 3.2Test files...34

Table 5.3 Energy consumption on popular web pages...58

Table A.4 Compression ratio, time and energy in compression and decompression for A10.jpg.......66

 Table A.5 Compression ratio, time and energy in compression and decompression for mean.wma66

Table A.6 Compression ratio, time and energy in compression and decompression for heart.mp3....67

Table A.7 Compression ratio, time and energy in compression and decompression for qq.exe..........67

Table A.8 Compression ratio, time and energy in compression and decompression for nb.swf.........67

Table A.9 Compression ratio, time and energy in compression and decompression for sample.html 68

Table A.10 Compression ratio, time and energy in compression and decompression for flash.dpf....68

Table A.11 Compression ratio, time and energy in compression and decompression for rafale.bmp. 68

Table A.12 Compression ratio, time and energy in compression and decompression for xlspec.xml.69

Table A.13 Compression ratio, time and energy in compression and decompression for mcmd.bin. .69

VIII

Chapter 1 INTRODUCTION

The Internet, a global integration of physical infrastructure, software

and information, is arguably one of the most important inventions in

last decades. Internet is used today to spread and search for

information, share knowledge, interact with each other, execute

commercial operations, play games and so on. Nowadays the

influences have been spread over the world. It has been said that no

one’s life is without being influenced by Internet no matter how he or

she interacts with it, directly or indirectly.

Looking backward to the history, Internet was just born as

connections of work stations in a network in the 1960s, but it quickly

spread and penetrated into the whole world only within the following

two decades and was covered with innumerable fortune and glory.

However, Internet was also born with technical limitations which

evolve side effects on social and economic functions. That is why

redesign of the Internet architecture has been taking shape in across

the globe.

Wireless networks have had a significant impact on the world and are,

by any measure, the fastest growing segment of telecommunications.

Already today, there are almost 1.5 billion Internet users and this

number may go up to 4 billion as the Internet becomes genuinely

mobile (ITU-T. 2009-09-25). Therefore, the main interest of this thesis

closely ties to mobility.

Particularly, in the aspects of energy efficiency and energy awareness

1

of wireless networks, ICT-based energy efficiency is considered on one

hand for substantial savings in energy production, reducing

greenhouse gas emissions, enhancing business competitiveness and

social welfare. So far, Internet traffic grows by a factor of roughly 10

every 5 years which follows Moore's Law and the price paid for the

growth is a doubling of energy consumption every 5 years (Nemertes

Research). According to Efore Oy, the energy consumption of ICT

infrastructure is 2.1 TWh (billion kWh) and energy consumption of ICT

user terminals is 4.6 TWh in Finland. Furthermore, the corresponding

greenhouse gas emission contributed by ICT is approximate 2.5% of

carbon dioxide and other greenhouse gas emissions from all

electricity generation technologies. Especially mobile user energy

consumption is approximate 29kWh annually and the equivalent

carbon dioxide is 55 kg (Reijo Mäihäniemi. 2008). The aforementioned

numbers stress more emphasis on energy efficiency because of the

needs to cut down costs, and additional reward is to lower

greenhouse gas emissions for a climate improvement and take credit

of positive image creation. In particular, the future Internet will not

only offer energy efficient ICT devices and facilities but also provide

ICT solutions for better energy savings.

On the other hand, stress is also laid on the importance of energy

awareness. In a wireless network, hand-held devices are being

crammed with a large number of communication capabilities like

UMTS, HSDPA, IEEE802.11b/g and Bluetooth, and an ever-increasing

range of communication services, which result in an important design

factor for manufactures: a dramatic and critical increase of energy

consumption in the devices. Energy consumption directly affects

functionality and usability of the devices. Given the initial energy level

2

for every device, Quality of Service (QoS) and lifetime are typically

considered as two main criteria to evaluate network services,

unfortunately the battery capacity is a fundamental limitation, thus

the motivation to emphasize energy awareness is the optimization of

system’s design at all layers.

In order to create solutions for energy efficiency and energy

awareness of the future Internet communication, novel techniques are

needed. Based on a study of Kenneth Barr and Krste Asanovic (Barr.

K. C. & Asanovic. K 2006), the energy consumed on a single bit

transmission over wireless is over 1000 times greater than a single

32-bit CPU computation. This fact shows great benefits in reducing

the number of bits transmitted over the radio link and offers

potentials for reducing transmission time and energy consumption in

mobile and wireless access networks. In their paper, bzip2, compress,

lzo, ppmd and zlib are examined with experimental work, which

indicates that energy savings from compression are not only

depended on compression ratio but compression speed due to the

tradeoff between the energy consumption of intensive computational

requirements for reducing file sizes, and the energy saved by less bits

to be transmitted. Besides, the paper proposes an asymmetric

compression using different compression and decompression

schemes to save more energy.

In another study (R Xu, Z Li, C Wang, and P Ni. 2003), the researchers

focus on saving energy on mobile devices for only downloading. It re-

quires the server to compress data with certain schemes to achieve

the maximum energy saving in mobile devices. Their proposal to re-

duce energy is to decompress data on-the-fly instead of decompress-

3

ing entire data after receiving them all.

Moreover, there is a study (Maddah Rakan, Sharafeddine Sanaa.

August 2008) taking the signal strength into consideration. The

approach in the study is to compress data on-the-fly only when the

signal strength is good enough. This point is also mentioned in this

paper (C Krintz and S Sucu. January 2006) that compression used or

not is based on the network status and bandwidth availability.

Regarding the transmission impacts, there is a study (J.-P. Ebert, B.

Burns, and A. Wolisz. February 2002) investigating impacts on energy

consumption of IEEE 802.11 network interfaces from the transmission

rate, the RF transmission power and the packet size.

Overall, compression decreases the number of transmitted bits

resulting in reduction of the transmission time. This introduces

reduction in energy consumption as well. However, compression

schemes involve tradeoff due to the intensive computation and

memory access to compress and decompress data. The consequence

might be that more energy is consumed than when simply

transmitting the raw data. Furthermore, transmission rate in wireless

networks may give different results in energy consumption and affect

the decision on whether to deploy compression schemes or not.

Energy consumption on hand-held devices differs from each other due

to hardware and software related factors, therefore an evaluation over

modern hand-held devices provides a more timely understanding of

data transmission and compression in the view of energy efficiency,

and it is also possible to offer a chance to explore new approaches for

more energy savings. Nokia N810 supports IEEE802.11b/g, thus a

4

study of impact of transmission bit rate on energy consumption is

carried on WLAN networks in this thesis. This study investigates the

use of data compression, and evaluates its impact on energy

consumption. Compression gives benefits in reduction of file size most

of the time, however file types result in different compression effects

as well as different energy consumption. Therefore, a large number of

files with different types are examined to avoid careless misusage of

compression programs or incorrectly choosing the compression

programs on certain data. We also deeply examine 9 tools which are

the representations of lossless compression schemes in several

families of compression algorithms. The criteria we used to evaluate

compression schemes are compression/decompression time and

energy, and compression ratio. In the whole thesis, the term

compression ratio is defined as the ratio between the uncompressed

size and the compressed size. This study shows by means of

experimental work that content-aware compression schemes reduce

energy consumption significantly, while blind or careless use of compression

results in a huge energy loss. Moreover, link status is an important factor to

guide a proper compression usage.

The rest of this thesis is organized as follows. In the following chapter,

compression algorithms are reviewed and the compression

applications we evaluated are presented. Chapter 3 describes test

equipment, experimental setup and workload, and explains the

methodology of this study. The experimental study starts from

Chapter 4. Chapter 4 investigates transmission bit rate impact on

energy consumption. In Chapter 5, we examine compression ratio,

compressed time and consumed energy of different compression

software on a wide-range of workloads under different bit rates, and

5

try to indicate which tools are capable of energy-aware lossless

compression schemes. Besides, we demonstrate the benefits of

compression gained when surfing Internet. In the last chapter,

Chapter 6, we conclude our findings and suggest topics for future

study.

6

Chapter 2 COMPRESSION ALGORITHMS

Compression is a technique to reduce the consumption of expensive

resources. Normally, it helps to release the pain of quickly increased

mass storage, lower the amount of data transmitted and reduce file

size for improved program speed, therefore the criteria to evaluate

compression algorithms are based on their compression speed,

compression ratio and computational complexity. However, the

research purpose of this study is to reduce energy consumption and

achieve energy-aware communication in mobile devices, thus the

solutions for our goal can not be concluded with reliance on the

normal criteria and it is necessary to review state-of-art compression

algorithms and compression programs to understand the behavior of

compression for the purpose of energy savings.

Data compression algorithms can be divided into two categories,

namely, lossy and lossless compression. Since lossy compression

suffers from introduced differences when compressing and

decompressing, a review of lossy compression is briefly introduced

and we focus mainly on lossless compression algorithms, which allows

compressed data to be reconstructed exactly identical to the original

data. In order to present comprehensive evaluation of compression

schemes, this study hence examines a wide range of compression

algorithms that have been proposed for coding with an emphasis on

the following compression algorithms: statistical compression,

dictionary-based compression, predictive coding and context mixing.

7

Additionally, this chapter introduces the compression programs we

used in the study, which are chosen from the most representative in

each category mentioned above. In order to find a good solution in

energy-aware communication, we take more compression programs

into consideration to study their influence on energy consumption in

our experiments.

2.1 Compression categories

Compression is a process to generate a representation of information

using encoding schemes that require additional bits to recover the

original information. Based on the ways to reconstruct encoded

information, compression algorithms are categorized into two classes,

as mentioned, lossless compression algorithm and lossy compression

algorithm.

Lossless compression is used to represent information which can be

recovered into the original data without any mismatch. Lossless com-

pression thus provides ability to compress data which have to remain

the same as the original data. Normally, text compression and com-

pression used in communication are the cases that can not tolerate

any difference between the original and reconstructed data.

Lossless compression takes use of reducing statistical redundancy in

data, however this property results in a limitation that lossless compression fails to

compress already compressed data and random data without any discernible patterns.

Even more, misusage of lossless compression therefore gives an expansion to data size.

8

The term lossy compression is in contrast to lossless data compres-

sion, which can not recover or reconstruct the compressed data with-

out difference, in exchange for better compression ratio. Lossy com-

pression involves some loss of information, but in certain degree the

lack of exact reconstruction can be tolerated. Actually, limited dis-

cernment and sensitivity of humans are made use of by lossy com-

pression, thus the size of reconstructed data would be highly reduced

if only the quality of recovered data does not bring in uncomfortable

infidelity. More generally, lossy compression is widely used to compress

voice and multimedia data. For example, WMA and MP3 are used to

compress music, while JPEG and PGF are for image compression, and

MPEG, H.261, H.263 and H.264 are designed for video (AMI Power Limit-

ed).

We are aiming to achieve energy efficient communication in wireless

networks, which demands the transmitted data to be identical to the

original, therefore the compression algorithms reviewed in this study

are lossless compression. However, we mainly focus on the coding

schemes used in our experiments. The theory study in this thesis is

partly based on the books “Data compression: the complete

reference” (David Salomon, Giovanni Motta, David Bryant. 2007) and

“Introduction to data compression” (Khalid Sayood. 2000). The details

of the algorithms are presented in the following sections.

2.2 Statistical Compression

Statistical compression schemes substitute symbols represented by

codes to match code lengths with the probabilities of the symbols. In

9

more details, statistical compression replaces the symbols which have

a higher probability of occurrence by assigning variable-length codes

to the symbols. Shorter presentations are used in the data resulting in

reduced number of bits per symbol. Huffman coding and arithmetic

coding are typical statistical compression schemes, which are intro-

duced in the following sub-sections.

2.2.1 Huffman Coding

The Huffman method (D.A. Huffman. 1952) was developed by David

Huffman. As a kind of statistical compression algorithm, Huffman

coding replaces symbols in a file by a variable-length code table as

well, but the difference is Huffman coding uses a particular way to

derive a prefix code that expresses the most common characters

using shorter strings of bits than are used for less common source

symbols. Huffman coding, also a procedure for optimum prefix codes,

follows the principles that symbols having a higher probability of

occurrence will have shorter representation than symbols having a

lower probability of occurrence in order to shorten the average

number of bits per symbol.

In detail, the method starts to construct a tree of all symbols in

descending order of their occurrence probabilities. Then the

procedure carried on in following steps. The two symbols from the

bottom of the tree are selected, and replaced with an auxiliary

representation for both of them. Then the probabilities of the symbols

are added to the top of the partial tree. The representations of each

symbol are determined steps continue till the top of the tree.

10

Huffman coding is commonly used for data compression and also the

basis for many other compression schemes. However, Huffman cod-

ing has some disadvantages, such as changes in optimal coding as

the ensemble changes, and running through the entire file in ad-

vance. In order to address the problems, the improvements are

brought in by some of the schemes. According to "Code and Parse

Trees for Lossless Source Encoding" (Abrahams, J. Jun 1997), varia-

tions of Huffman coding include:

Adaptive Huffman coding

The standard Huffman coding has to take all statistic information of encoded sym-

bols into consideration. However, the statistic information is known in advance nor-

mally. A variation called adaptive Huffman coding allows to avoid transmitting sta-

tistics data by calculating the probabilities dynamically based on recent actual fre-

quencies in the input stream.

Adaptive Huffman coding starts with an empty Huffman tree and to modify the tree

as symbols are being read. As a result, the Huffman tree is constructed just based on

the statistic information already processed. This method avoids repeat reading of

the entire source stream, therefore the advantage of Adaptive Huffman Coding is

the encoding can be done in real time but the cost is that the scheme is more sensi-

tive to the transmission errors.

n-ary Huffman template algorithm

The weights are often used in Huffman coding to represent numer-

ic probabilities. The n-ary Huffman template algorithm uses the {0,

1, ..., n-1} alphabet encode message and allows any kind of weights , such

as costs and frequencies, including non-numerical weights.

11

http://en.wikipedia.org/wiki/Adaptive_Huffman_coding

Huffman coding with unequal letter costs

In the standard Huffman coding, a problem named prefix coding

problem is to find a prefix free code over minimum weighted aver-

age codeword size. Huffman coding with unequal letter costs is to minimize

the weighted average codeword length.

The canonical Huffman code

The advantage of a canonical Huffman tree is that one can encode the codebook in

fewer bits than the tree in standard Huffman coding since it provides an efficient

way to store the codebook.

2.2.2 Arithmetic Coding

Equivalently to the Huffman coding, arithmetic coding evaluates statistics information

with certain symbols and generates ideal variable-length codes as well. As opposed to

Huffman coding, arithmetic coding represents the entire data set by a single number

with a range between 0 and 1. This range is divided into sub-intervals each representing

a certain symbol. The principle of arithmetic coding to assign a symbol with a number

in the sub-intervals based on its probability of occurrence. The size is proportional to

the probability, so the higher probability will be assigned a higher range.

The idea in arithmetic coding is to map the source sequence 1 2u u ... into a number x in

the interval on the real line which can be represented by the following equation,

1

2 n
n

n

x x −

=

=￥

12

where nx is 0 or 1 for each n. This mapping ensures the random variable x uniformly

distribute on the real line and each nx (n=1, 2….) is independent and equiprobably

equal to 0 or 1 (Robert G.Gallager, 1994).

Arithmetic coding starts to read symbols from source stream, and then assigns an inter-

val to each symbol according to its probability. A narrower interval is represented by

more bits, so this is the way the scheme used to achieve compression. The way to assign

the interval is that a high-probability symbol always receives a larger interval while a

low-probability symbol results in a narrower interval.

2.2.3 Summary

In this sub-section, as the most commonly used and efficient coding schemes, Huffman

coding and its variations are described first and we also present another statistical com-

pression method, arithmetic coding, is similar to Huffman coding.

One of the differences is that arithmetic coding encodes an entire message into one sig-

nal number rather than Huffman coding representing each symbol into a series of num-

ber. Another difference is that Huffman coding only produces optimal variable-size

codes when the symbols have probabilities of occurrence that are negative powers of 2.

This is because the Huffman method assigns a code with an integral number of bits to

each symbol in the alphabet. Moreover, a worst case for Huffman coding is when the

probability of a symbol exceeds 0.5 due to the upper limit of inefficiency unbounded

(David Salomon, Giovanni Motta, David Bryant. 2007).

Considering the demerits of Huffman coding, arithmetic coding is more efficient or at

least identical to Huffman coding, but in return, it demands high computation and runs

13

slowly and does not produce prefix code. Additionally, US patents cover a variety of

techniques for arithmetic coding. So, arithmetic coding does not outstand over Huffman

coding in practice.

2.3 Dictionary Compression

Unlike statistical compression, dictionary-based compression methods

operate on searching matched strings and replacing the strings’

positions by references instead of using variable-length codes to

represent symbols in source stream based on their probabilities of

occurrence. A typical example, text compression, shows that some

words recur constantly in a text source and there are some other

words do not or rarely occur, thus it is reasonable to encode the

frequently occurred words with references, which are generated in a

dictionary containing commonly occurring words. If the word can be

found in the dictionary, it is replaced by a reference; if it can not be

found, the word is kept the same.

The dictionary-based compression is most useful with sources that

generate a relatively small number of patterns quite frequently, such

as text, and also has a good performance for some binary data such

as image and audio data. According to the ways to construct the data

structure, dictionary-based compression can be divided into two

classes, static dictionary and adaptive dictionary compressions.

14

2.3.1 Static Dictionary

Static-dictionary-based compression, as its name implies, involves

static dictionary decided before performing compression. This

compression method is always used and most appropriate when

knowing the source in advance. It is highly efficient to encode a

source stream based on a static dictionary containing the recurring

patterns if some knowledge about the source is known ahead of time.

Therefore, static dictionary-based coding is narrowed to well work on

some specific data or applications. Expansion of the data may occur

instead of compression if the coding method is used in other

situations. It also makes sense that static-dictionary-based coding

may, however, be a good choice for a special purpose but is not

useful for general purposes.

2.3.2 Adaptive Dictionary

Compared to static-dictionary-based compression, adaptive-

dictionary-based coding is more generic and preferable. The idea

behind this method is to use already processed data as source to form

a dictionary that evolves over time. For more details, it starts the

process with a default or a size-limited dictionary, and then

continually read words from a source stream. Meanwhile, it splits the

stream into chunks where word is compared with the word in the

dictionary. If a matched word is found, a reference to it is written to a

compressed file. Otherwise, the word is added to the dictionary. Under

this circumstance, an old word should be deleted from the dictionary in

order to keep the dictionary small for efficiency.

15

Although adaptive dictionary-based coding is more complex than

static dictionary-based one, it still surprises us with following

advantages (David Salomon, Giovanni Motta, David Bryant. 2007).

(1) String search and match operations are involved, rather than

numerical computations.

(2) The decoder can easily reconstruct dictionary and does not have

to parse the input stream in a very complex way and search the

dictionary to find matches.

The fundamental works on adaptive-dictionary-based coding started with two papers of

Jacob Ziv and Abraham Lempel (Jacob Ziv, Abraham Lempel. 1977 and 1978), in

which two approaches and their variations are provide to construct an adaptive dictio-

nary. Named by the year, the approaches launched in 1977 were categorized to the LZ77

family, while the approaches mentioned in 1978 paper were classified to the LZ78 fami-

ly correspondingly.

LZ77

Known as a “sliding window” compression algorithm, LZ77 constructs the

dictionary based on the previously encoded sequence. The encoder maintains the

window consisting of two parts, namely, a search buffer which is the current

dictionary containing the recently encoded sequence, and a look-ahead buffer that

contains the sequence to be encoded. The window is shifted through the source

stream as the symbols are being encoded. The encoder scans the entire search buffer

for a match to the first symbol in the look-ahead buffer. When consecutive symbols

in the search buffer match the symbols in the look-ahead buffer, the length of the

match is retrieved. The longest match selected by the encoder, along with the offset

which is the distance of a search pointer for a match in the search and look-ahead

buffer, and the codeword corresponding to the symbol in the look-ahead buffer that

follows the match, consists a token, which is written to the output stream. In

16

contrast, the decoder maintains a buffer with same size as the encoder’s window.

When the decoder decodes the input stream, it inputs a token to scan for a match in

the buffer. Then it writes the match and the codeword to the output stream.

Due to improvements on the length of the match, buffer size, the

offset and sliding window in the following years, many variations were

announced, such as

LZSS(LZ-Storer-Szymanski), LZFG(Lempel–Ziv–Fiala-Daniel), LZW(Lempel–Z-

iv–Welch), LZMW(Lempel–Ziv-Miller-Wegman), LZY(Lempel–Ziv-Yabba),

LZRW(Lempel–Ziv-Ross-Williams), LZS(Lempel–Ziv–Stac),

LZO(Lempel–Ziv–Oberhumer), LZP(Lempel–Ziv-PPM), LZMA(Lem-

pel–Ziv–Markov chain Algorithm).

Of special notice is the hash table employed by the Deflate algorithm to search for

matches (P. Deutsch. May 1996).

Due to US patents on parts of LZ78 algorithm, LZW, a modification of

LZ78, is described in the following sub-sections, as well as other well-

known algorithms used by the compression programs in our

experiments.

LZW

Lempel-Ziv-Welch (LZW) as an improved implementation of LZ78,

was developed by Terry Welch in 1984. LZW concatenates input

symbols one by one to a string which is searched for a match in

the dictionary. As long as the match is found, the encoder adds a

new symbol to the string till the match fails. The last successfully

matched string is written to the output stream and the failed

17

string is added to the next available dictionary entry. Furthermore,

the design goal of LZW is not optimum but fast compression.

LZO

Lempel-Ziv-Oberhumer (LZO) is a popular variation of LZ77

originally published in 1996, and named by Markus Franz Xaver

Johannes Oberhumer with Abraham Lempel, Jacob Ziv together.

Like LZW, LZO is also designed for speed and suitable for real-time

compression and decompression. LZO compresses and

decompresses on a block of data with same size. It compresses

the block into matches and runs of non-matching literals to

produce good results on highly redundant data and deals

acceptably with non-compressible data (Markus Franz Xaver

Johannes Oberhumer. 2008).

LZP

Another variation of LZ77 developed by Charles Bloom is LZP, in

which the P stands for “prediction”. LZP is based on LZ77 and the

principle of context prediction. Actually, the recent encoded con-

text is used as historical data to predicate the following data. LZP

scans the most recent occurrence of the context and compares

the context with the current input, which is encoded if a match is

found, while non-matched context is written using another

method.

LZMA

Lempel-Ziv-Markov chain algorithm (LZMA), having been under

development since 1998, combines LZ77 and Deflate compression

algorithm. It provides a high compression ratio and also high

18

speed of decompression.

2.4 Predictive Compression

As mentioned above, dictionary-based compression methods encode

symbols based on the dictionary. Statistical compression methods are

based on the study on statistic information to construct suitable mod-

el and then actually encode the symbols according to their probabili-

ties.

Furthermore, the models are built using two different approaches.

One is based on assigning probabilities to the symbols, and this is

also the approach used in statistical compression method. Predictive

compression considers the context of a symbol when assigning it a

probability. Actually, predictive compression methods examine the

history of the symbols to get better knowledge about the symbols

being encoded. Besides, statistical and dictionary-based compressions

result in a more skewed set of probabilities in encoded messages.

Predictive compression is one way to represent the message that

would result in greater skew.

Indeed, already known context implies the knowledge about the

following context to be encoded, which can be used to enhance

compression performance with a cost of significant demand of

memory. Three predictive compression methods, namely prediction

with partial matching, Burrows-Wheeler transform and context mixing

will be described in the following paragraphs.

19

2.4.1 Prediction with Partial Match

Prediction by partial matching (PPM), proposed by Cleary and Witten

in 1984, is an adaptive statistical compression method based on con-

text modeling and predicting the next symbol. The principle of PPM is

searching the symbol to be encoded in a size reduced context for a

match.

In more details, PPM starts with an order-N context, in which N indi-

cates the context is the entail one. It searches its data structure for a

previous occurrence of the current context followed by the next sym-

bol. If the symbol has not previously been encountered in this con-

text, an escape symbol contained in encoder’s alphabet is used to en-

code, and the algorithm reduces the order from N to N-1. This process

continues to find a match in the next smaller context, which is con-

sisted of the rightmost N − 1 symbols of previous context until either

a match is found, or a conclusion is drawn that no match has been en-

countered previously in any context. During the process, the encoder

determines the probability that the symbol will appear following the

particular context based on input data that has been seen in the past.

The encoder then invokes an adaptive arithmetic coding algorithm to

encode the symbol with the probability.

Although PPM compression is one of the best-ratio achieved lossless

compression algorithms for text compression, it unfortunately

requires a significant amount of memory for processing. Additionally,

PPM does not work well for images since a digital image is normally

the result of digitizing an analog image.

20

2.4.2 Burrows-Wheeler Transform

BWT, namely the Burrows-Wheeler Transform, transforms a block of

data into well sorted format which keeps the same data elements as

the original ones, only the orders is changed. The algorithm was invit-

ed by, of course, Michael Burrows and David Wheeler in 1994, while

the transform as a major part of this algorithm was developed by

Wheeler in 1983.

Burrows-Wheeler Transform works on blocks unlike other compression

algorithms and each block is encoded separately as a string. Thus,

this compression method is also well-known as a block sorting com-

pression. The idea behind the algorithm is summarized as follows.

Given a sequence of length N, totally N sequences can be created by

cyclically shifting one symbol to the left including the original se-

quence itself. Then these N sequences are reordered lexicographically.

By choosing the last letter of each sequence, a new sequence denot-

ed by L consisting of letters is formed. Some more information denot-

ed by I is also created to be used later by the decoder. The encoder

compresses and writes L and I to the output stream starting with run-

length encoding and then uses move-to-front coding, which is particu-

larly effective on the type of structure exhibited by the sequence L,

and applies Huffman coding at last. The decoder applies a reverse

way in the encoder to decompress.

Burrows-Wheeler Transform is a general compression method. It

achieves very high compression ratio on text, sound, and images, but

it is extremely CPU and memory intensive in return.

21

2.4.3 Context Mixing

Context mixing, the last algorithm we examine, combines an

arithmetic coder and a predictor which computes the next symbols by

weighted averaging. As a predictive compression algorithm, it is

related to Prediction by Partial Matching but the difference is that the

next symbol is predicted by two or more combined statistical models

to yield a more accurate prediction than any of the individual

predictions.

Some compression methods are difficult to classify to the classes

discussed so far as statistical, dictionary and predictive compressions.

So, this section leaves a space for an unclassified compression

method: symbol ranking. Symbol ranking is developed using techniques derived

from LZ-77 and with a fast string-matcher. It orders a list of possible symbols from

most likely to least likely based on current context and then encodes the position of the

symbols in the ordered list (Peter Fenwick. 1996).

2.6 Compression programs

High compression ratio and fast compression/decompression speed

are normally taken as merits to evaluate compression algorithms.

Moreover, energy consumption of each algorithm is time related and

also depends on memory usage. In order to find a good solution in

energy-aware communication, we choose the most representatives in

each category and also take compression programs’ maturity and

popularity into consideration. The compression programs we evaluate

in our study are introduced as follows:

22

2.6.1 gzip

gzip (gzip homepage. 2009) is a well-known compression program

based on deflation algorithm which is a combination of LZ77 and

Huffman coding. It was first publicly released on October 31, 1992

and has been adopted by many applications.

gzip compression works on blocks of data and each block uses a single mode of com-

pression. gzip is an appropriate candidate for its good compression and decompression

rate, and high compression ratio. Even though the Deflate is the algorithm supporting

compressing data in flexible ways, which are no compression for already compressed

data and compressing with LZ77 and Huffman coding, gzip always performs compres-

sion even if the compressed file is slightly expanded. Fortunately, gzip only involves a

few bytes expansion for the gzip file header and 5 bytes every 32K block of data in the

worst case. Besides, the 9 levels are used to adjust performance of gzip, among which -1

gives fastest speed, while -9 offers best compression ratio.

2.6.2 lzo

Another candidate based on LZ77 in our experiment is lzo. It uses

LZ77 with a hash table to perform searches. lzo is implemented in

ANSI C and portable in different platforms. Its purpose is to provide a

real-time compression program, therefore offers fast compression and

decompression speed. It also means that it favors speed over

compression ratio. Additionally, lzo supports the following features:

 Requires 64 kB memory for compression and no memory for

decompression.

23

 Allows to slow down compression speed for a competitive compression ratio,

while the speed of decompressing is not reduced.

 Includes compression levels for generating pre-compressed data which achieve

a quite competitive compression ratio.

As mentioned in the documentation of lzo homepage, the algorithms supported are

LZO1, LZO1A, LZO1B, LZO1C, LZO1F, LZO1X, LZO1Y and LZO1Z, and 37 com-

pression levels are supported because the author wants to support unlimited backward

compatibility. According to the specification (lzo homepage. 2009), “The naming

convention of the various algorithms goes LZOxx-N, where N is the compression level.

Range 1-9 indicates the fast standard levels using 64 kB memory for compression. Lev-

el 99 offers better compression at the cost of more memory (256 kB), and is still reason-

ably fast. Level 999 achieves nearly optimal compression - but it is slow and uses much

memory, and is mainly intended for generating pre-compressed data.”

2.6.3 lzma

Since large variants of LZ77exist, we performed experiments on one more tool named

lzma in the family. lzma compresses data using an improved version of LZ77 algorithm

named Lempel-Ziv-Markov chain-Algorithm (LZMA), which combines LZ77 and

DEFLATE compression algorithm. lzma is also implemented in the 7-Zip program

(lzma homepage. 2009) and provides a high compression ratio and very fast

decompression with small memory requirement. Same as gzip, it has 9 compression

levels as well, -1 gives fastest speed and -9 offers best compression ratio.

2.6.4 ncompress

ncompress is based on Lempel-Ziv-Welch (LZW) algorithm. As

mentioned in Section 2.3.2, LZW maintains a string translation table

24

from the text being compressed instead of using sliding window in

LZ77. lzw does not offer highest compression ratio instead it is one of

the fastest compression program.

2.6.5 lzpxj

We have two tools based on combined algorithms of Lempel-Ziv-

based compression and PPM. The one, lzpxj, supports good

compression ratio, fast compression and decompression speed, and

has one option (1-9) which select memory usage. Correspondingly,

the minimum usage is selected by compression level 1, the maximum

is 9 and the default is 6.

2.6.6 flzp

flzp is the other compression program using combination of LZ77-

style string matching and PPM-style context modeling. As a fast and

memory conservative compression program, it is used as a

preprocessor to a low-order compression program to improve both

compression ratio and speed. Additionally, the decompression speed

is twice as fast as the compression speed.

2.6.7 bzip2

Developed by Julian Seward and released in July, 1996, bzip2 is a pop-

ular and stable compression program using the Burrows-Wheeler

block-sorting text compression algorithm to convert sequences into

strings of identical symbols, move-to-front transform and Huffman

coding.

25

bzip2 generally offers better compression ratio than that achieved by

LZ77 and LZ78-based compression programs, and approaches the

performance of the PPM family of compression programs. bzip2 pro-

vides higher compression ratio for more files than gzip, however,

more computation is the tradeoff. In this sense, bzip2 is slow at compress-

ing, but as an asymmetric scheme, it has a relatively fast decompression.

Compression levels of bzip2 are similar to gzip, it has 9 levels from -1, the fast one, to

-9, the best one. The levels set the block size from 100 k to 900 k when com-

pressing, while the levels do not effect decompression (bzip2 homepage.

2009).

2.6.8 srank

The srank is also a member in the predictive compression family. It uses symbol ranking

in BWT and is designed for compression speed rather than good compression ratio. It is

designed for fast compression speed rather than high compression ratio. Besides, srank

supports 8 compression levels and the maximum number of context is selected by op-

tion –C9 offering the highest compression ratio.

2.6.9 paq9a

The last software we evaluated is paq9a which was developed by Matt

Mahoney and belonged to paq series. Paq9a is based on context

mixing algorithm, it uses LZP preprocessing to speed compression of

redundant data and is encoded by arithmetic coding. The option -1 of

paq9a selects minimum memory but it is still extremely CPU and

memory intensive.

26

2.7 Summary

In this chapter we began our exploration of data compression tech-

niques with a description of lossless and lossy compression, also

looked at three compression categories, namely statistical, dictionary

and predictive compression in which the knowledge of the creative

methods and their variants can be used to provide compression. Due

to the many compression algorithms, the methods introduced in this

chapter are chosen based on the algorithms contained in compression

programs used in our experiment.

Table 2.1 Summary of the compression programs

Tools Version Algorithms Levels
gzip 1.3.3 LZ77 + Huffman coding 1-9
lzo 2.03 LZ77 37 levels
lzma 4.32.7 LZMA 1-9
ncompress 4.2.4.2. orig LZW default
lzpxj 1.2h LZP + PPM 1
flzp v1 LZ77+ PPM default
srank 1.1 Symbol Ranking in BWT 1-8
bzip2 1.0.5 BWT + Huffman coding 1-9
paq 9a Context Mixing not evaluate

further

Besides, we have introduced 9 compression programs in Section 2.6

that give an overview of the compression programs evaluated in this

study. One thing worth mentioning here is that lzpxj is tested only

with compression level 1 because lzpxj with high compression level

option is considered as a highly time-consuming compression

program according to our initial experiemtns. Besides, paq9a is

extremely CPU, memory intensive, even through with only the option

27

-1 of paq9a to be used, it still consumes unacceptable long time and

correspondingly significant energy. So, it will not be evaluated further

in our study. Table 2.1 summaries the aforementioned software along

with their version, algorithms and the compression levels used in our

experiments.

Chapter 3 EXPERIMENTATION SETUP

Our experiments aim to investigate the energy consumption of compression schemes

and form a compression benchmark based on the results for further study. In this study,

we not only try to examine consumed energy of different compression programs on

Nokia N810, but also investigate the effects of transmission speed on energy

consumption under different bitrates to fully understand overall energy consumption of

the system.

In order to achieve clear understanding of the effects of compression on Nokia N810, a

number of compression programs and plenty of compression levels will be examined.

For this reason, it is necessary to have a measurement design for quick and easy

acquirement of the energy consumption. In the following sections, the facilities used in

our experiments, measurement procedures for energy consumption and bit rates will be

introduced, and compressed files will be listed as well.

3.1 Measurement Equipment and Software

Nokia N810

28

Nokia N810, alias Internet Tablet, is a device used in this study to perform data com-

pression and file transmission. It does not support mobile communication, but in instead

allows Internet connection via IEEE802.11 b/g or Bluetooth. The specification of the

device is described as follow: 400MHz TI OMAP 2420 (Open Multimedia Application

Platform), 128 MB random access memory (N810 specification. 2007). One of the rea-

sons we chose N810 as our measurement equipment is that Maemo Linux OS running

on the device offers wide choices of open source compression programs and the device

represents quite well a modern mobile phone.

NI USB-9162 and cRIO-9215

National Instruments USB-9162 is a single module carrier providing a highly portable

solution for NI C Series modules. In our experiments, NI cRIO-9215 is used to capture

voltage fluctuations. It features four differential analog input channels with a maximum

single-channel sampling rate of 100 kHz. With plug-and-play connectivity via USB and

NI-DAQmx software, the combination of USB-9162 and cRIO-9215 provides an ability

to acquire, analyze, and present data in real-time for fast setup and quick measurements

(National Instruments).

Jugi’s Traffic Generator(jtg)

Developed by Jukka Manner in C language, Jugi's Traffic Generator (Jukka Manner.

2006) is a Linux traffic generator used to send and receive UDP or TCP packets. jtg sup-

ports a number of parameters to generate customized traffic for certain purposes and

provides detailed summary about the traffic statistics. It is worth mentioning that the ac-

curacy of the transmission is suffered due to Linux kernel itself and the effect from oth-

er running processes. However, jtg provides two methods to control packet sending in-

terval. One is to use select() function in which Linux kernel only provides an accuracy

of around 10 milliseconds. The other is to use busy-waiting, it forces the sender to use

sleep() function to control the interval, however it may occupy all CPU usage.

29

http://www.cs.helsinki.fi/u/jmanner/software/jtg/
http://www.cs.helsinki.fi/u/jmanner/software/jtg/

3.2 Energy Measurement Setup

To achieve uninterrupted energy consumption measurements, it is necessary that the

voltage input to the Nokia N810 remains stable. This will ensure more accurate mea-

surements results on battery powered devices. The battery of the N810 is replaced by a

battery adaptor which connects to a 3.9 V DC power supply.

Power consumption is acquired by calculating by the following equation:

P = U * I

where U is the electrical voltage on the N810 measured with the NI data logger, I is the

current.

The parameter to be measured of the N810 will be the voltage, since NI data logger re-

porting the voltage fluctuations is probably the simplest way to calculate the power con-

sumption of the device. Fig 3.1 illustrates the setup of measuring the voltage of the

N810. The battery of the N810 is replaced by the battery adaptor, which connects serial-

ly to a 0.1 Ohm resistor. The voltage readings are recorded with a rate of 1000 samples

per second across the resistor using an additional Windows PC with NI-DAQmx soft-

ware running on.

30

Fig 3.1 Energy measurement setup

Furthermore, the equation P = U * I is extended to P = 0.1U /0.1Ω * (3.9 - U)

where 0.1U Ω is the voltage on the resistor.

Correspondingly, energy consumption is acquired by calculating E = P * T.

where T is the running time for a process, such as running time for compression,

decompression or transmission.

Depending on the compression programs, the duration of compressing and decompress-

ing takes from less than one second to several minutes or even longer for certain file

types. Therefore, synchronization is needed for accurate measurements. Optimally, syn-

chronization between the PC with NI-DAQmx software and the N810 is done before

measurement using NTP or scripts. Fig 3.2 illustrates an example of voltage fluctuations

of the N810 when bzip2 performs compressing and decompressing. As observed, basic

voltage requirement of the N810 is around 3.8575 V, while voltage curve becomes un-

31

stable when compression starts.

Fig 3.2 Voltage fluctuations in real time

3.3 Bit Rate Measurement Setup

In order to investigate bit rates’ effects on energy consumption, our wireless link experi-

mental equipments used in this study are the N810 and a desktop computer with Ubuntu

8.04 and a D-Link IEEE 802.11b/g wireless USB card installed running in ad-hoc mode.

32

The packet sending intervals are adjusted by jtg, namely bit rates are controlled. In order

to avoid negative effects on measurement from high CPU usage, select() function is

used in our experiment to adjust packet sending interval. In our setup, the maximum

sync up speed is 11 Mbps and real speed is around 1448 Kbps when sending UDP pack-

ets with 1400 bytes packet length. With implemented report features, jtg gives the sum-

maries of the traffic and the basic statistical results including necessary information

needed in the analysis.

Similarly to the energy measurements of compression and decompression, voltage val-

ues logged by the data logger and transmission time are used to calculate energy con-

sumption. With sending and receiving time and bytes, we can also obtain the energy

consumed on a bit or a second at sender and receiver. In detail, the energy consumed on

sending is measured on the N810 when it sends packets to the PC. In contrast, re-

ceiving energy is obtained also on the N810 with a difference that

packets are sent from the PC.

3.4 Test Files

Web surfing and media files downloading constitute main data traffic on mobile

devices, thus our experiments are mainly focus on typical file types, such as web pages,

media files and binary machine files. The details of the files we examine are listed in

Table 3.1 and file names and sizes are given in two columns.

The compression levels for each compression program aforementioned in Table 2.1 are

used to examine each file. The higher levels of gzip, bzip2 and lzma provide higher

compression ratio and slower compression speed. The compression programs lzpxj,

fpaq and paq achieve very good compression ratio at the expense of insanely long

33

runtime and enormous consumption of energy correspondingly. Especially, paq takes

excessive time, thus it is not considered in the following chapters.

Table 3.2Test files

File names Size(B) File names Size(B)

A10.jpg 842468 mean.wma 1462495

sample.html 1058244 nb.swf 3861613

Flash.pdf 4526946 qq.exe 842468

Heart.mp3 2313950 rafale.bmp 4149414

mcmd.bin 2760821 xslspec.xml 1584495

34

Chapter 4 TRANMISSION IMPACT

In order to use compression to achieve energy efficiency and energy awareness in future

Internet communication on hand-held devices, it is necessary to acquire a good

understanding of the energy consumption behaviors of wireless interfaces. The

knowledge helps us to obtain the total energy consumption of a compression-capable

communication in either uplink or downlink. Besides, it is also useful to guide future

research and implementations.

As mentioned in Section 3.2, the measurements are performed in ad hoc mode to ex-

clude the effects of the packets transmitted in infrastructure networks, such as broadcast

traffic and access control messages. This chapter describes the details of our energy con-

sumption measurements on transmission in IEEE 802.11 wireless networks. Power con-

sumption is one of the metrics to be examined and energy consumed on sending and re-

ceiving a bit is also helpful to analyze energy consumption pattern of the device. Clear-

ly, packet sizes surely affects traffic load, so the energy consumption in sending and re-

ceiving data packets of various sizes is also one of the study topics. Last but not least,

bit rate is one of the most important metrics to evaluate wireless networks. Therefore it

is necessary to investigate the impacts of bit rate on transmitting packets over radio for

energy-aware communication.

Here, the results of basic energy requirements of the N810 are given first as a baseline

to evaluate the following works. The power consumption is around 0.0149 watts when

radio is turned off and the value is 0.83448 watts when radio is on. The values were

obtained under conditions that the screen of the device was turned off, no application

was running at the same time and power saving was also off. Besides, all measurements

35

in the thesis are carried under same circumstances. In the following sections, two

transmission factors are about to be discussed considering energy consumption.

4.1 Packet Sizes Impact

This section addresses the question about the effects of packet sizes on energy

consumption on the Nokia N810. We want to understand the variations of energy

consumption when increasing the size of the packet to be transmitted, and examine the

behavior of energy consumption when transmitting UDP packets simply because of

avoiding TCP retransmissions. The answer to the question could help us to obtain a

basic understanding for finding optimum packet sizes in wireless networks and making

right decisions when we implement energy-aware communication in future study.

We have used a number of packet sizes in the experiments ranging from small packet

with 50 bytes to large packet with 1400 bytes and the transmission rate is controlled by

setting packet sending interval to 100 ms. Power management can not improve energy

efficiency, but it helps to save energy because radio is turned into sleeping state while

there is no traffic. Therefore, the experiments on transmitting different-sized packets are

without power saving.

First of all, sending requires a bit more power than just receiving and the energy needed

to send a bit is also higher. This observation shows that sending packets demands higher

energy than receiving. More details are presented in Fig 4.1 and Fig 4.2, in which

energy consumption of sending and receiving UDP packets with different packet sizes is

illustrated. The energy is showed in two ways, namely consumed energy per second and

the energy per bit using square and dotted lines respectively. Considering relative small

scales of the power consumption in both figures, the initial points are not marked from

zero in order to give a better illustration of the energy consumed per seconds.

36

Fig 4.3 Consumed energy on packets with different packet lengths when sending

Fig 4.1 shows that the packet sizes show different trends of impacts on the power level

variation for each presenting way. Energy consumed per second on sending packets of

various sizes is presented as a linear increment along the packet sizes. However, the ba-

sic power consumption of radio is so high that the trend is not negligible. In contrast, a

strong impact on energy consumed per bit can be observed. The energy consumption

dramatically drops as the packet size increases. Moreover, the consumed energy roughly

falls down to half when the packet size doubles. As clearly shown in the figure, power

consumption does not have an obvious change even when the packet size enlarges from

50 bytes to 1400 bytes, thus per-bit energy consumption is highly depend on the size of

the packet to be transmitted.

37

Fig 4.4 Consumed energy on packets with different packet length when receiving

Energy consumption associated with receiving a bit is similar to the case of sending it.

Fig 4.2 also shows that the basic consumed power cost of receiving is relatively high,

while the incremental cost of data is relatively low. Therefore, energy consumed on

receiving a large packet is low, and shows that the consumed energy on a bit drops to

8.657 micro joules.

4.2 Transmission Rate Impact

As observed in Section 4.1, sending and receiving small packets is extremely inefficient

in the of view of energy consumption per bit. In order to maximize energy efficiency

and show the benefits of compression in wireless communications, 1400 bytes are used

as packet size in our experiments. Therefore, the tool jtg is configured to send 1400

38

bytes UDP packets at different intervals. The select() function is used as sending

interval control instead of busy waiting to avoid high CPU usage and unnecessary

power consumption resulting in inaccuracies. At first, the jtg is in sending mode to

generate traffic load at given intervals starting from 0 ms with a increment from 50 ms

to 300 ms. The energy costs of sending are illustrated in Fig 4.3. Based on the measured

energy of the transmission, the numbers of packets and transmission time, the results are

demonstrated in the same way as in Fig 4.1, showed in two kinds of y-axes.

Fig 4.5 Consumed energy under different transmission intervals when sending

In Fig 4.3, the energy consumption per second only changes slightly. Compared to the

cost of sending, the high energy requirement of just turning the radio on is already

excessively. Thus, the incremental energy required for faster sending has limited impact

on power consumption. While the energy consumed on a bit is roughly linear

39

proportional to the sending intervals due to linear decrease in the number of the bit to be

transmitted.

The x-axes can be represented in another way by converting the expression of packet

sending intervals to the transmission rate. The corresponding dots to the ones in Fig 4.3

are illustrated in Fig 4.4, expressing transmission rate impacts on energy consumption.

With the adaption of packet sending intervals, the transmission rates range from

37.50kb/s to 1448.67kb/s. The curves reflect the same knowledge expressed in Fig 4.3

that fast sending reduces energy consumption on a bit, while the power consumption is

only slightly increased due to the high fixed overhead.

Fig 4.6 Consumed energy under different transmission rates when sending

Regarding receiving packets, the power consumption and the consumed energy associ-

ated with it is presented in Fig 4.5 and Fig 4.6. The consumed energy on receiving

40

shows a similar trend to the case in sending except that the overall energy consumption

is relative less.

Fig 4.7 Consumed energy under different transmission intervals when receiving

41

Fig 4.8 Consumed energy under different transmission rates when receiving

4.3 Summary

During series of measurements of transmission on the N810, the observations show that

the energy consumption of transmission could be formulated as a function of the num-

ber of bits to be transmitted plus the overhead. Moreover, transmitting small packets or

sending with slow transmission rate have disproportionately high energy costs on a bit,

while energy consumed per second does not show fluctuations because radio channel

acquisition overhead is large but the energy consumption on transmitting bits is relative

low. The phenomenon could be interpreted as: regarding a certain mount of data, send-

ing large packets over a fast link is energy-efficient, or in other words that it helps to re-

duce energy consumption when sending the data in a burst way and then force the radio

card to a sleep state. The possible tradeoffs involved are an increase in power consump-

tion and congestion in the link.

42

The idea to save energy is to maximize the time that the radio spends in sleep mode.

Considering characteristics of compression, it is helpful to shorten transmission time

resulting in reduction of consumption of energy resource. The following chapter will

discuss the impacts of transmission rate and file types when using compression in

wireless networks.

Chapter 5 COMPRESSION IMPACT

David Salomon defined compression as “Data compression is the process of converting

an input data stream (the source stream or the original raw data) into another data

stream (the output, or the compressed stream) that has a smaller size. A stream is either

a file or a buffer in memory.” The reasons for data compression getting popular, as

mentioned in his book “Data Compression: The Complete Reference”, is to save storage

space and shorten transmission time. His opinion indicates that the design and normal

usages incorporated with data compression are not energy-oriented. Thus, blind or

unconditional compressions for energy-aware communication related to wireless

networks may result in wasting of energy and even slowing down transmission rate.

This chapter aims to carry an experimental study on deploying compression for energy-

43

aware communication. In the of view of energy savings, energy consumption is the

primary metric to evaluate the compression programs instead of only focusing on such

traditional metrics as compression ratio and speed. We evaluate a set of lossless

compression programs with different compression levels described in Section 2.6. As

known, many kinds of data are not suitable for compression because of a poor

compression ratio. In order to obtain a good understanding of the behavior of energy

consumption on different type of data, ten kinds of data listed in Table 3.1 are

examined. In such circumstances, not only the downstream and upstream energy

impacts will be examined, but also we consider overall energy consumption to see how

different compression can lead to energy savings for the whole system.

Firstly, we give an overview of the power consumption and energy usage behavior on

the N810. The data of compression/decompression time and the energy consumption for

every compression program on each file are plotted in Fig 5.1, in which a summary of

power consumption is given in box plots. As illustrated, the power needed for compress-

ing centralizes in the range from 0.34350 watts to 0.58350 watts with 0.44620 watts as

mean. While compression program needs 0.32340 watts on average to decompress data

and corresponding power consumption range is 0.25460 watts to 0.37510 watts.

44

Fig 5.9 Summary of power consumption

Basically, energy consumption of compression and decompression is depended on CPU

cycles, memory accesses and processing time. As mentioned earlier, some compression

algorithms are highly CPU and memory intensive. Even so, processing time is the

primary factor of affecting energy consumption. As explored in Fig 5.2, the measured

values of compression time and energy consumption are drawn in scatter plot, in which

a strong correlation between the two variables is presented. Stated more precisely, the

figures show that there is an overlapping of most of the dots and the lines and no

anomaly that is so high above the lines. The observation indicates that consumed energy

on compression and decompression are highly dependent on their processing time.

45

Fig 5.10 Time VS consumed energy when compressing and decompressing

Based on the type of the files, we will discuss the relationship between file content and

wireless network status in the perspective of energy consumption. The analysis is

presented in the way of figures in the following sub-sections and the detailed numbers

used to draw the figures are categorized and listed in APPENDIX A.

5.1 Hard-to-compress Files

As known, Internet Point-to-Point Protocol (PPP) includes some compression methods,

such as Magnalink Variable Resource Compression Algorithm (MVRCA) and a high

performance LZ derivative named FZA (D. Rand. June 1996). Moreover, ITU-T V.42bis

recommendation (V.42bis) is incorporated with a variant of the Lempel-Ziv-Welch

(LZW) compression method (ITU-T. 2006-09-29). These communication protocols with

46

integrated compression methods are used in most modems to compress streams on the

physical layer.

Unfortunately, many kinds of data are not suitable for compression. Viewing from the

perspective of file types, lossless data compression programs always fail to compress

certain files if compression programs can not find repeating patterns inside files such as

pre-compressed and already highly compressed data. Moreover, some compression

programs generate even bigger size file of certain data while some others work well.

The answer, of course, is that such files do not have much redundancy to remove. An

example to show is to compress a file with totally random text, in which each symbol

occurs with equal probability, thus same length is assigned to the represented codes

based on the probability and this does not help to reduce the file size.

In our dataset, almost all the selected compression programs fail to compress the files

with extension of JPG, MP3, WMA and EXE. Indeed, these files have been highly

compressed already, as a consequence that none of compression programs can achieve

good compression ratio. In Fig 5.5, the highest compression ratio of selected

compression programs for each file and their compression time are presented in dotted

lines and columns respectively. Cat is a Linux command to concatenate files and print

on the standard output, which is used as direct memory copy to compare with other

results in our experiments. As observed, flzp and ncompress result in an expansion for

all the files, srank only offers a little saving in izes for JPG and MP3 files with certain

compression levels, also the other compression programs give limited benefits for JPG,

MP3 and WMA files. The file with EXE extension, the hardest file to be compressed,

can be only slightly reduced in size by gzip and lzo.

47

Fig 5.11 Compression ratio and time of different compression programs

The energy consumption of compressing, decompressing and transmitting the JPG,

MP3, WMA and EXE files are illustrated in Fig 5.4 and Fig 5.5. According to the results

in Section 4.2, the energy consumption is measured under the condition that the packet

sending interval is 10 ms to achieve maximum energy savings. As observed, sending

directly is the most energy efficiency way to transmit highly compressed files. Of

course, the overall energy consumption is correspondingly increased when any

compression methods are incorporated. Considering very limited energy saved (or

wasted in some cases) from transmission of compressed data and the required energy

consumed on compression, it is not worth applying compression to these files. Indeed,

attempting to compress these already compressed is a waste of time and even increase

energy consumption. Even if the resulting file size may shrink, the gain of energy

savings is still negative due to excessive compressing and decompressing overhead.

48

Fig 5.12 Energy required to compress and send JPG, MP3, WMA and EXE files

Fig 5.13 Energy required to receive and decompress JPG, MP3, WMA and EXE files

49

Fig 5.14 Total energy required to transmit JPG, MP3, WMA and EXE files

Fig 5.6 gives an illustration of overall energy consumption when transmitting hard-to-

compress files. The total energy showed in the figure consists of the consumed energy

on compressing/decompressing, sending and receiving. As observed, extra energy is

involved by compression. Thus, it is energy saving to transmit these files directly

through radio without any compression in the perspective of overall energy

consumption.

5.2 Compressible Files

This sub-section discusses the rest files listed in Fig 5.7. Grounded upon our

investigations, gzip, bzip2, lzpxj, lzma and lzo achieve better compression ratio than the

others on the test files listed in Fig 5.7, however, lzpxj is highly time demanding to

achieve the outstanding ratio as showed in the upper figure, also fpaq requires extreme

long time to compress the files. Among the compression programs, gzip and lzo are two

50

standouts in the performance of ratio/time meaning that the time cost on the ratio is less

than the others.

Fig 5.15 The best ratio/time of the compression programs and the corresponding ratio

PDF and SWF files are discussed first. These files, frequently delivered over Internet,

are not only a better data structure but also efficiently compressed, thus all the compres-

sion programs perform unsatisfactorily. More specifically, a number of compression

schemes are supported by PDF to reduce file sizes. For example, JPEG and JPEG2000

are used to compress color and grayscale images, CCITT (the facsimile standard, Group

3 or 4), Run Length Encoding and JBIG2 (Joint Bi-level Image Experts Group) are ap-

plied to compress monochrome images, LZW and Flate are used to compress text,

graphics and images (Adobe Systems Incorporated. November 2006). As to SWF, it

uses such technologies as elements reusing and data structure shaping to minimize file

sizes, and also supports a variety of bitmap formats such as JPEG, ZLIB bitmaps, and

uses ADPCM (Adaptive Differential Pulse Code Modulation), MP3 and Nellymoser for

audio and video compression (Adobe Systems Incorporated. November 2008). Observa-

tions show that some compression programs can still offer better compression ratio than

51

offered to aforementioned JPG, MP3, WMA and EXE files. Even through considerable

time and energy are consumed to compress the files, which in return only saves little

space, the limited gain in ratio from compressing PDF and SWF files offers an opportu-

nity to achieve an energy-saving transmission under certain condition since the energy

consumed on a single bit transmitted over wireless is costly, especially over slow links.

The reason for the phenomenon is demonstrated in Fig 5.8, in which the least values of

energy consumption achieved by certain levels are showed. Energy required for com-

pressing and decompressing are considered as a basic demand illustrated in the left fig-

ures, moreover, transmission costs are taken into account under two conditions, namely

a fast link sending packets at 10 ms interval and a relative slow link with a 30 ms send-

ing interval. About 0.8056 micro joules energy is required on one bit with 10 ms send-

ing interval and the corresponding energy required to receive one bit is 0.3941 micro

joules. Whereas sending one bit demands 2.637 micro joules energy and the N810 needs

2.530 micro joules to receive the bit when sending interval is 30 ms. The big different

energy requirement on transmission of a bit over the fast and slow links help to stress

emphasis on using an adapted compression on PDF and SWF files. As showed in the

middle figures in Fig 5.9 and Fig 5.10, using compression involves more energy con-

sumption than directly sending the files when packets are sent at 10 ms interval, where-

as, gzip and lzo save energy for both files when the N810 sends packets at 30 ms inter-

val. The tools gzip, bzip2, lzma and lzo help to release the pain on transmitting the files

at the receiver. Considering overall energy consumption showed in Fig 5.11, gzip, lzma

and lzo are useful to transmit PDF and SWF files. In summary, it is even valuable for

energy saving to compress such kinds of well-organized and compressed data as PDF

and SWF files when radio links are suffered.

52

Fig 5.16 Energy required to compress and decompress PDF and SWF files

Fig 5.17 Energy required to compress and send PDF and SWF files

53

Fig 5.18 Energy required to receive and decompress PDF and SWF files

Fig 5.19 Total energy required to transmit PDF and SWF files

More specifically, when the network is slow or overcrowded, more time is worth spend-

ing on compression to trade for reduction in file sizes. On the other hand, if the network

54

is fast and its utilization is low, it may be better to transmit such data as PDF and SWF

files without any compression, saving the CPU time for other processes.

By contrast, the energy consumption of compressing, decompressing and transmitting

BIN, HTML, BMP and XML files are showed in Fig 5.12, Fig 5.13 respectively. The

files belong to easy-to-compress files and compression offers a possibility of energy

savings even when packets are sent at 10 ms interval. Most of the compression

programs provide an energy efficient transmission of the files, while lzpxj and fpaq

demand extremely long time and energy to compress. Furthermore, gzip, a good

competitor in energy-saving to send of BIN, HTML and XML files, reduces the energy

consumed on sending the files to 68%, 23% and 18% of the energy needed for just

sending directly. To compress and send BMP file, ncompress gives a better performance

of 56% saved energy than 50% saving offered by gzip. At receiver, similar energy is

required by all the compression programs expect lzpxj and fpaq, which still demand

long time to decompress the files. Gzip still performs highly efficient to give 44%

saving on BIN and 77% saving on HTML file, but better results are given by lzma for

BMP and XML files, and consumed energy drops to 38% and 19% of the energy

consumed for just simple receiving respectively. In the view of overall energy

consumption, gzip offers the best results for all the files as showed in Fig 5.14.

55

Fig 5.20 Energy required to send BIN, HTML, BMP and XML files

Fig 5.21 Energy required to receive BIN, HTML, BMP and XML files

56

Fig 5.22 Total energy required to transmit BIN, HTML, BMP and XML files

5.3 Case Study of Web Sites

After the study on single file, examples are illustrated in Table 5.1 to assess the benefits

in energy savings brought by using compression in a hand-held device. CNN, Facebook

and MSN front pages captured on April 22nd 2009 are used as typical Internet traffic in

our experiments. For all the pages, HTML files are concatenated with images,

JavaScript, flash and gif files. The tests are carried on under a condition with 30ms

packet sending interval to demonstrate a massive energy saving for typical usage on

mobile device even under a relative slow link. In the table, the benefits of using

compression to save energy when transmitting the web pages are presented with values

for uplink, downlink and overall energy consumption. The consumed energy of direct

copy and transmitting is showed by using cat to demonstrate a baseline of energy

consumption. Compared to direct cat transmission, minimum energy consumed by

certain compression programs is given in the following rows. The percentage of energy

57

savings are also listed in bold type. For example, compression saves up to 50.36%

energy when browsing MSN homepage. Even through energy saving degrees are highly

depending on embedded contents of each web page, lzo, lzma and gzip are the best

compression programs for energy savings, which generally offer the best energy savings

for easy-compressed file transmission.

Table 5.3 Energy consumption on popular web pages

Pages CNN Facebook MSN
Size 862951B 609868B 633693B

Uplink cat: 5.592 J cat: 3.960 J cat: 4.118 J
lzo: 3.205 J gzip: 1.523 J lzo: 2.286 J

57.31% 38.46% 55.51%
Downlink cat: 2.611 J cat: 1.853 J cat: 1.928 J

lzma: 1.141 J gzip: 0.536 J lzo: 0.971 J
43.70% 28.93% 50.36%

Overall cat: 8.203 J cat: 5.813 J cat: 6.046 J
gzip: 4.023 J gzip: 2.059 J lzo: 3.257 J

49.04% 35.42% 53.87%

58

Chapter 6 CONCLUSIONS AND FUTURE WORK

One of the reasons to deploy compression in wireless communication for energy-aware

purposes is that compression makes it possible to trade computation for communication

energy savings. Compression is designed for reducing in file sizes by removing redun-

dancy in the files. Indeed, the compression programs examined in our experiments

achieve good performance on the files with BIN, HTML, BMP and XML extensions,

however they always fail to compress such already highly compressed data as JPG,

MP3, EXE and WMA files and even expand the file sizes. So, it indicates that compres-

sion schemes may cause significant energy losses instead of saving when blindly or

carelessly chosen and applied. As demonstrated, energy consumed on uplink and down-

link is asymmetric. We have also shown that, when carefully chosen and applied, some

compression schemes allow an energy saving up to 57% and 50% on uplink and down-

link respectively for visiting popular web sites on the N810 in IEEE802.11 WLAN en-

vironment, among which gzip, lzma and lzo are the generic compression programs pro-

viding great energy savings. Thus, it could be a tradeoff between sender and receiver

that one of the ends uses more aggressive compute-intensive compression schemes to

minimize the energy consumption on the other end.

As just mentioned, energy-aware communication should take the content of data into

consideration, however it is not enough. Energy consumption on radio is highly depend-

ed on transmission time. As the quality of the radio link goes down, even small savings

in file size can lead to substantial energy savings, since energy consumption per bit be-

comes increasingly significant. Through our experiments, compression is demonstrated

as a great impact on energy saving in wireless networks when signal strength drops to

certain degree.

In summary, a good data compression scheme for energy efficiency should be con-

59

tent-aware as well as aware of the link status to dynamically trade energy between com-

putation and communication.

Overall, this study offers contributions in three aspects. First, we quantify the impacts of

compression programs on popular Internet data in view of energy consumption. Second,

the factors on reduction in energy in wireless networks and energy consumption

tradeoffs associated with data compression and communication are presented. Based on

that, we also address suggestions to how and when to compress for energy savings.

The study in this thesis is an investigation and evaluation of compression for energy-

aware communication in IEEE802.11 networks. The results will be used for an energy

efficiency-driven transmission that is capable of compressing and decompressing files

on the fly. More precisely, the transmission could support feedback-driven compression

which dynamically adjusts its parameters or select compression schemes based on

circumstances. In order to achieve the goal, it would be necessary to understand more

details as follows.

Regarding the study of compression, there are hundreds of compression programs

available and some of them are designed for typical file types, such as xmill for XML

pages. It would be useful to have such compression programs integrated into a content-

aware transmission algorithm. Besides, file sizes definitely effect energy consumption

of compression, so modeling the relationship is one of the interests.

This study focuses on evaluating the effects of compression on energy-aware

communication. As we already know, energy consumption is related to transmission

behaviors as well, so it is worth performing more experiments to investigate the energy

consumption behavior of wireless interfaces not only in an ad hoc network but also in

an infrastructure network for energy-aware design. Meanwhile, the study will pay more

attention to different types of traffic such as broadcast and point-to-point data, not only

60

limited to UDP packets. Moreover, energy consumption on 3G devices may

significantly differ from the cases in our study, so it is interesting to perform similar

experiments on 3G devices.

61

REFERENCES

Adobe Systems Incorporated. November 2006. “PDF Reference sixth edition”

[Online]. Available at: http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-

7.pdf (Referred 16.05.2009).

Adobe Systems Incorporated. November 2008. “SWF File Format Specification Version

10”. [Online]. Available at:

http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf (Referred

16.05.2009).

Abrahams, J. Jun 1997. “Code and parse trees for lossless source encoding” Compres-

sion and Complexity of Sequences. pp 145-171.

Alistair Moffat & Andrew Turpin. 2002. “Compression and Coding Algorithms”. ISBN

978-0-7923-7668-2.

AMI Power Limited. “Compression History”. [Online]. Available at:

http://www.ami.hk/image/products/DVR/History/Compression History.pdf (Referred

17.05.2009).

Barr. K. C. & Asanovic. K. 2006. “Energy-aware lossless data compression”. Syst. vol.

24, no. 3, pp. 250-291.

“bzip2”. 2009. [Online]. Available at: http://www.bzip.org (Referred 09.05.2009).

C Krintz and S Sucu. January 2006. “Adaptive on-the-fly compression,” IEEE Transac-

62

tions on Parallel and Distributed Systems, vol. 17, pp. 15–24.

David Salomon, Giovanni Motta, David Bryant. 2007. “Data compression: the complete

reference”. ISBN: 0387406972.

D.A. Huffman. 1952. “A method for the construction of minimum redundancy codes”

Proc. IRE., 40(9):1098–1101.

D. Rand. June 1996. “The PPP Compression Control Protocol (CCP)”. IETF RFC 1962.

First International Workshop on Green Communications. Welcome note. [Online].

Available at: http://www.green-communications.net/icc09/home.htm

“gzip”. 2009. [Online]. Available at: http://www.gzip.org (Referred 09.05.2009).

ITU-T. 2006-09-29. “Data communication over the telephone network”. ITU. [Online].

Available at: http://www.itu.int/rec/T-REC-V/en (Referred 13.05.2009).

ITU-T. 2009-09-25. “Worldwide mobile cellular subscribers to reach 4 billion mark late

2008”. [Online]. Available at: http://www.itu.int/newsroom/press_releases/2008/29.html

(Referred 13.05.2009).

Jacob Ziv, Abraham Lempel. May 1977. “A Universal Algorithm for Sequential Data

Compression”. IEEE Transactions on Information Theory 23 (3). pp 337–343.

Jacob Ziv, Abraham Lempel. 1978. “Compression of individual sequences via variable-

rate coding.” IEEE Transactions on Information Theory, IT-24(5). pp 530–536.

63

Jean-loup Gailly and Mark Adler. 2009. “gzip official pages”. [Online]. Available at:

http://www.gzip.org/ algorithm.txt (Referred 09.05.2009).

Jukka Manner. 2006. “Jugi’s Traffic Generator(jtg)”. [Online]. Available at:

http://www.cs.helsinki.fi/u/jmanner/software/jtg (Referred 09.05.2009).

J.-P. Ebert, B. Burns, and A. Wolisz. February 2002. “A trace-based approach for deter-

mining the energy consumption of a wlan network interface” in Proc. of European Wire-

less 2002, Florence, Italy, Feb. 2002, pp. 230–236.

Khalid Sayood. 2000. “Introduction to data compression”. The second edition.

“lzo”. 2009. [Online]. Available at: http://www.oberhumer.com/opensource/lzo

(Referred 09.05.2009).

“lzma”.2009. [Online]. Available at: http://www.7-zip.org (Referred 09.05.2009).

Maddah Rakan, Sharafeddine Sanaa. August 2008. “Energy-Aware Adaptive

Compression Scheme for Mobile-to-Mobile Communications” Spread Spectrum

Techniques and Applications, 2008. ISSSTA '08. IEEE 10th International Symposium

on , pp.688-691.

Markus Franz Xaver Johannes Oberhumer. 2008. “LZO -- a real-time data compression

library”. [Online]. Available at: http://www.oberhumer.com/opensource/lzo/ (Referred

09.05.2009).

N810 specification. 2007. [Online]. Available at: http://europe.nokia.com/A4568578

(Referred 09.05.2009).

64

National Instruments. “Operating Instructions-CompactRIO cRIO-9215”. [Online].

Available at:

http://digital.ni.com/public.nsf/fa8a679c1aabbd3486256d61004a378b/09a5914f6bc2a28

348257172000af5b1/$FILE/9215_Operating_Instructions.pdf (Referred 11.05.2009).

Nemertes Research. “Internet Interrupted: Why Architectural Limitations Will Fracture

the 'Net”. [Online]. Available at:

http://www.nemertes.com/studies/internet_interrupted_why_architectural_limitations_w

ill_fracture_net (Referred 09.05.2009).

P. Deutsch. May 1996. “DEFLATE Compressed Data Format Specification version”.

IETF RFC 1951.

Peter Fenwick. 1996. “Symbol Ranking Text Compression”. [Online]. Available at:

http://www.cs.auckland.ac.nz/~peter-f/FTPfiles/TechRep132.ps (Referred 05.05.2009).

Reijo Mäihäniemi, Efore Oyj. “ICT Getting Green”. Speech given to course Telecom-

munications Forum in Helsinki university of technology. Oct 2008.

Robert G.Gallager, 1994. “Arithmetic coding”, supplementary notes. pp 1 [Online].

Available at: http://web.mit.edu/gallager/www/notes/notes3.pdf (Referred 06.05.2009).

R Xu, Z Li, C Wang, and P Ni. 2003. “Impact of data compression on energy

consumption of wireless-networked handheld devices,” in IEEE International

Conference on Distributed Computing Systems.

The final version of the Work Programme for ICT research in FP7 for 2009 and 2010.

[Online]. Available at: http://cordis.europa.eu/fp7/ict/newsroom/library_en.html

(Referred 09.05.2009).

65

APPENDIX A. RESULTS OF THE EXPERIMENTS

Packet sending interval for the following data is 10ms

Table A.4 Compression ratio, time and energy in compression and decompression for A10.jpg

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress
and recv
Energy

Total Energy

cat 1 - - - - - 18.252 17.529 35.781

gzip 1.0012-1.0018 0.2301-0.2631 3.808-4.352 3.406-4.049 1.488-1.722 0.716-0.930 19.261-19.464 17.745-17.959 37.022-37.309

bzip2 1.0011-1.0072 0.1111-0.1511 6.626-9.503 4.385-5.360 4.199-5.467 2.017-2.248 21.951-23.137 19.047-19.192 40.998-42.329

flzp 0.9436 0.1813 5.206 4.100 2.677 1.515 21.512 19.583 41.094

lzpxj 1.0089 0.0253 39.858 41.738 28.946 30.488 46.562 47.386 93.948

lzma 0.9924-0.9963 0.0868-0.1207 8.245-11.471 11.743-16.698 4.780-7.011 1.327-1.506 22.638-24.859 18.444-18.677 41.200-43.264

srank 0.7206-0.9960 0.1105-0.1640 6.049-6.521 3.897-4.892 2.581-2.728 1.647-2.055 20.425-27.374 19.083-25.306 39.507-53.518

fpaq 0.9914 0.0831 11.927 11.505 8.351 8.041 26.279 25.239 51.518

ncompress 0.8145 0.1343 6.064 4.295 1.823 1.135 28.765 25.694 54.459

lzo 0.9999-0.9999 0.1401-0.3281 2.698-7.139 3.026-4.451 0.706-3.348 0.607-1.737 18.480-21.122 17.692-18.787 36.188-39.986

 Table A.5 Compression ratio, time and energy in compression and decompression for mean.wma

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress
and recv
Energy

Total Energy

cat 1 - - - - - 31.166 29.910 61.075

gzip 1.0318-1.0330 0.1229-0.1420 7.961-8.390 6.658-12.014 3.264-3.633 1.800-2.300 33.166-33.551 26.537-30.950 59.537-64.172

bzip2 1.0188-1.0289 0.0691-0.0855 11.968-14.889 7.532-8.622 7.318-8.672 3.020-4.190 37.462-38.661 32.778-32.965 70.293-71.457

flzp 0.9639 0.1172 8.227 8.165 5.182 3.020 37.191 33.726 70.917

lzpxj 1.0451 0.0151 69.006 72.071 51.234 52.240 80.831 80.599 161.390

lzma 1.0193-1.0305 0.0507-0.0691 14.888-20.306 7.569-8.896 8.681-12.550 2.594-3.854 38.690-42.492 31.316-32.889 70.413-73.835

srank 0.7550-1.0304 0.0385-0.0796 12.580-19.543 9.471-11.095 5.554-7.549 4.251-4.723 35.496-48.605 32.974-44.108 68.470-92.714

fpaq 1.0232 0.0464 22.058 20.190 15.232 14.654 45.386 43.580 88.966

ncompress 0.8717 0.0779 11.190 7.641 3.322 2.232 48.167 42.639 90.806

lzo 1.0014-1.0047 0.0758-0.1579 6.650-13.259 6.316-7.062 2.048-18.173 1.531-2.731 32.857-37.684 31.080-32.231 63.987-69.273

66

Table A.6 Compression ratio, time and energy in compression and decompression for heart.mp3

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress
and recv
Energy

Total Energy

cat 1 - - - - - 49.274 47.287 96.561

gzip 1.0091-1.0115 0.0810-0.0912 11.074-12.493 9.267-10.442 5.128-5.588 2.462-3.248 53.478-53.852 48.801-49.497 102.322-103.499

bzip2 1.0079-1.0163 0.0441-0.0490 20.575-23.160 11.124-13.962 12.645-13.233 5.832-6.427 60.849-61.255 52.155-52.614 133.398-113.584

flzp 0.9492 0.0773 12.287 11.244 7.720 4.401 59.154 53.732 112.886

lzpxj 1.0161 0.0095 107.247 110.133 80.248 79.320 128.289 125.405 253.94

lzma 1.0040-1.0151 0.0297-0.0426 23.623-34.151 10.192-11.513 13.3434 3.864 61.802 49.997 112.729

srank 0.7296-1.0151 0.0325-0.0487 17.904-22.479 14.541-19.034 8.022-9.397 6.279-7.346 56.757-76.300 52.412-71.427 109.169-147.538

fpaq 0.9994 0.0315 31.752 31.185 23.388 22.748 72.233 69.604 141.837

ncompress 0.8345 0.0472 17.673 11.268 5.279 3.124 78.698 68.753 147.451

lzo 1.0002-1.0040 0.0501-0.1158 8.824-20.028 8.267-9.212 2.737-10.829 2.202-2.569 51.544-60.022 48.920-49.261 100.634-108.699

Table A.7 Compression ratio, time and energy in compression and decompression for qq.exe

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress and
recv Energy

Total Energy

cat 1 - - - - - 106.040 101.756 207.795

gzip 1.0045-1.00460.0304-0.039325.569-28.67420.963-21.53011.357-13.836 5.810-11.87 116.104-118.575 106.289-112.342 222.484-230.917

bzip2 0.9960-0.99880.0195-0.022145.524-51.27927.051-31.58127.967-30.17313.964-14.524 133.426-135.575 115.299-115.992 248.898-250.979

flzp 0.9433 0.0365 27.349 25.620 17.776 10.164 129.315 117.161 246.477

lzpxj 0.9960 0.0039 242.329 243.223 179.627 177.052 285.263 278.387 563.650

lzma 0.9919-0.99220.0133-0.019551.110-74.74922.123-25.26629.168-47.080 9.028-9.389 135.242-153.235 110.747-111.107 246.051-264.343

srank 0.7135-0.71360.0110-0.015454.637-64.47644.569-49.59418.324-24.22717.407-18.976 165.75-171.661 158.842-160.418 325.471-331.867

fpaq 0.9973 0.0091 78.258 67.407 54.293 50.334 159.783 151.529 311.312

ncompress 0.8147 0.0244 40.868 25.320 10.834 7.559 174.492 152.828 327.32

lzo 1.0032-1.00420.0232-0.050221.076-43.37519.810-20.896 6.545-25.535 5.527-6.493 111.421-130.300 106.110-106.490 217.965-236.731

Table A.8 Compression ratio, time and energy in compression and decompression for nb.swf

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress and
recv Energy

Total Energy

cat 1 - - - - - 81.829 78.513 160.342

gzip 1.1085-1.1160 0.0573-0.0626 17.795-19.469 9.141-9.619 7.971-9.9952 2.280-4.941 81.327-82.958 72.324-74.957 153.652-156.350

bzip2 1.1148-1.1804 0.0349-0.0374 29.782-33.687 14.833-19.041 18.851-19.546 7.475-8.262 88.314-91.985 74.129-77.578 162.443-169.563

flzp 1.1350 0.0678 16.739 12.093 11.030 5.282 82.808 74.137 156.945

lzpxj 1.2434 0.0081 154.317 153.074 115.705 113.324 181.224 176.175 357.399

lzma 1.2058-1.3313 0.0219-0.0367 32.842-60.699 10.073-12.028 19.379-40.534 3.999-4.250 84.521-101.725 62.699-68.923 148.940-164.424

srank 0.8150-0.9054 0.0172-0.0245 36.957-47.288 27.265-35.379 14.985-17.416 9.879-11.155 104.962-117.373 97.468-106.531 202.430-223.659

fpaq 1.0410 0.0167 62.213 50.392 42.702 37.220 120.959 112.291 202.430

ncompress 0.8676 0.0355 24.444 13.060 6.342 3.339 70.752 93.412 164.164

67

lzo 1.0743-1.1480 0.0373-0.0810 13.894-29.935 7.611-8.791 5.019-17.339 1.881-2.406 77.535-89.713 70.259-74.851 149.140-161.835

Table A.9 Compression ratio, time and energy in compression and decompression for sample.html

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress
and recv
Energy

Total Energy

cat 1 - - - - - 6.858 3.202 10.060

gzip 4.041-4.806 2.585-4.946 0.919-2.486 0.834-1.385 0.101-1.119 0.117-0.360 1.794-2.547 0.387-1.975 1.432-4.054

bzip2 4.930-5.466 1.116-1.429 3.593-4.672 1.399-2.365 2.084-4.672 0.502-0.734 3.475-4.083 2.631-3.970 5.106-7.833

flzp 3.420 1.580 2.164 1.647 0.925 0.543 2.930 1.197 4.127

lzpxj 5.708 0.293 19.459 17.208 14.533 12.230 15.755 14.012 29.767

lzma 2.6865-2.8808 0.243-1.560 3.363-24.734 1.073-1.520 1.827-18.914 0.091-0.290 3.315-20.054 2.673-16.235 4.614-32.984

srank 1.6701-1.8703 1.077-1.646 1.942-2.310 2.595-3.044 0.757-0.626 0.667-0.842 2.771-3.515 1.340-2.313 3.190-5.548

fpaq 1.4792 0.131 9.386 9.259 9.386 6.140 13.410 11.012 24.422

ncompress 1.5848 1.347 0.836 1.882 0.836 0.331 3.442 2.069 5.511

lzo 2.0464-2.4843 1.006-4.227 0.109-2.477 0.802-1..178 0.109-2.477 0.165-0.183 2.172-4.106 1.919-3.050 3.814-6.516

Table A.10 Compression ratio, time and energy in compression and decompression for flash.dpf

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress
and recv Energy

Total Energy

cat 1 - - - - - 96.139 92.251 188.390

gzip 1.1598-1.18100.0521-0.059620.090-22.68511.837-16.060 8.880-11.470 4.211-7.253 90.284-92.335 81.793-84.826 172.224-176.232

bzip2 1.1768-1.18910.0293-0.033435.207-40.58819.664-23.484 21.656-23.871 9.984-10.709 102.251-104.265 87.695-88.200 190.102-191.021

flzp 1.0786 0.0457 23.598 18.610 13.306 7.605 101.851 92.544 194.395

lzpxj 1.2115 0.0066 183.468 187.417 137.736 135.606 216.565 211.225 427.790

lzma 1.1994-1.22130.0145-0.030139.816-83.98416.505-17.787 22.928-57.596 6.346-6.859 102.555-135.791 81.367-83.244 185.799-217.522

srank 0.8502-1.22130.0300-0.042827.616-28.79621.805-23.053 12.926-13.682 9.523-10.932 91.479-125.246 85.792-117.318 177.271-242.516

fpaq 1.118 0.0191 58.600 58.012 43.311 42.972 128.736 124.918 253.654

ncompress 0.834 0.0282 29.798 20.810 6.478 5.889 146.002 133.307 279.309

lzo 1.118-1.175 0.0312-0.069816.809-37.41613.546-14.730 5.042-22.447 3.688-5.382 89.280-103.793 82.095-85.872 173.132-186.208

Table A.11 Compression ratio, time and energy in compression and decompression for rafale.bmp

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress
and recv
Energy

Total Energy

cat 1 - - - - - 87.756 84.192 171.948

gzip 2.6681-3.3080 0.1373-0.3796 8.208-24.100 5.203-3.375 3.992-16.124 1.139-2.425 32.935-42.586 26.596-32.611 60.985-70.395

bzip2 4.2972-4.6614 0.2505-0.3283 13.088-18.612 8.220-9.678 9.712-12.434 3.157-3.621 29.944-31.280 21.471-22.698 52.267-53.284

flzp 1.5905 0.1172 13.757 6.891 6.366 3.501 61.404 56.298 117.702

lzpxj 4.0631 0.0373 109.008 108.216 80.903 79.894 102.447 100.561 203.008

lzma 3.4509-4.2572 0.0410-0.1719 20.078-103.694 5.027-7.190 12.782-75.870 1.874-2.202 38.148-96.440 21.599-26.535 64.683-118.163

srank 2.2069-4.5272 0.1109-0.3487 14.466-20.477 21.373-29.781 6.546-9.502 6.341-8.414 27.199-48.065 26.066-44.92 53.265-92.993

fpaq 3.4037 0.0723 47.060 46.878 34.372 34.108 59.826 59.043 118.869

ncompress 2.8718 0.3053 9.406 7.340 2.650 1.800 41.074 37.238 78.313

lzo 1.7122-2.8707 0.056-0.3071 7.047-48.147 3.790-4.505 2.451-33.492 0881-1.654 41.172-65.606 30.370-49.948 80.084-103.924

68

Table A.12 Compression ratio, time and energy in compression and decompression for xlspec.xml

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress
and recv
Energy

Total Energy

cat 1 - - - - - 33.479 32.119 65.598

gzip 5.5916-7.2995 2.2881-4.4450 1.365-3.190 0.903-1.424 0.344-1.682 0.103-0.496 5.220-6.317 4.492-5.832 10.023-12.149

bzip2 7.6403-9.8951 0.8627-1.0881 7.022-11.470 2.820-3.270 5.008-8.195 0.856-1.039 9.383-11.573 4.188-5.052 14.600-15.857

flzp 4.8331 1.5831 3.053 2.048 1.695 0.933 8.611 7.568 16.178

lzpxj 10.2946 0.4919 20.929 18.607 14.523 13.254 17.770 16.368 34.139

lzma 7.4499-9.8221 0.2433-1.8569 4.012-40.374 0.762-1.699 2.719-29.897 0.140-0.362 7.206-33.300 3.420-4.583 11.547-36.871

srank 2.8366-9.7774 0.4631-3.5986 2.717-6.125 4.118-7.623 1.286-2.683 1.337-2.424 4.773-14.467 4.652-13.661 9.424-27.961

fpaq 2.1003 0.1066 19.694 17.058 13.339 12.148 29.254 27.415 56.669

ncompress 4.1818 1.5130 2.764 2.110 0.772 0.377 11.1 9.827 20.927

lzo 3.8141-6.3185 0.9881-5.4829 1.235-6.353 0.603-1.304 0.135-3.302 0.229-0.799 6.409-9.116 5.774-8.780 12.669-17.896

Table A.13 Compression ratio, time and energy in compression and decompression for mcmd.bin

Files Ratio Ratio/Time C_Time(s) D_Time(s) C_Energy(J) D_Energy(J) Compress
and Send Energy

Decompress
and recv
Energy

Total Energy

cat 1 - - - - - 58.382 56.010 114.392

gzip 1.9751-2.1208 0.1074-0.2903 6.803-19.753 2.620-4.229 3.212-13.507 0.774-2.268 31.920-40.970 27.208-29.079 59.829-69.583

bzip2 2.2186-2.4854 0.1812-0.2013 11.206-13.442 6.632-7.843 7.410-8.220 2.781-3.127 31.248-34.032 25.397-27.964 56.651-61.996

flzp 1.6626 0.2057 8.084 5.632 4.757 2.678 39.788 36.283 76.071

lzpxj 2.7586 0.0392 70.339 70.051 51.946 51.226 73.059 71.479 144.538

lzma 2.4807-3.0625 0.0545-0.1655 15.121-56.143 3.881-6.083 9.140-40.629 1.345-1.727 31.512-59.657 19.646-24.090 53.182-79.358

srank 1.5882-1.7502 0.0813-0.1633 10.653-19.54013.827-19.656 5.593-7.705 4.435-5.406 39.066-44.376 36.545-40.584 75.611-84.960

fpaq 1.5104 0.0404 37.364 33.739 26.368 24.467 64.928 61.457 126.385

ncompress 1.5686 0.1644 9.539 5.554 1.759 1.307 46.945 41.615 88.56

lzo 1.5087-2.0591 0.0729-0.282 6.301-27.776 2.856-3.652 1.755-18.351 0.550-1.347 36.342-47.017 30.721-37.856 69.041-79.294

69

	ACKNOWLEDGEMENT
	LIST OF ACRONYMS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1 INTRODUCTION
	Chapter 2 COMPRESSION ALGORITHMS
	2.1 Compression categories
	2.2 Statistical Compression
	2.2.1 Huffman Coding
	2.2.2 Arithmetic Coding
	2.2.3 Summary

	2.3 Dictionary Compression
	2.3.1 Static Dictionary
	2.3.2 Adaptive Dictionary

	2.4 Predictive Compression
	2.4.1 Prediction with Partial Match
	2.4.2 Burrows-Wheeler Transform
	2.4.3 Context Mixing

	2.6 Compression programs
	2.6.1 gzip
	2.6.2 lzo
	2.6.3 lzma
	2.6.4 ncompress
	2.6.5 lzpxj
	2.6.6 flzp
	2.6.7 bzip2
	2.6.8 srank
	2.6.9 paq9a

	2.7 Summary

	Chapter 3 EXPERIMENTATION SETUP
	3.1 Measurement Equipment and Software
	3.2 Energy Measurement Setup
	3.3 Bit Rate Measurement Setup
	3.4 Test Files

	Chapter 4 TRANMISSION IMPACT
	4.1 Packet Sizes Impact
	4.2 Transmission Rate Impact
	4.3 Summary

	Chapter 5 COMPRESSION IMPACT
	5.1 Hard-to-compress Files
	5.2 Compressible Files
	5.3 Case Study of Web Sites

	Chapter 6 CONCLUSIONS AND FUTURE WORK
	REFERENCES
	APPENDIX A. RESULTS OF THE EXPERIMENTS

