

ANTTI NIEMELÄ

TRAFFIC ANALYSIS FOR INTRUSION DETECTION IN

TELECOMMUNICATIONS NETWORKS

Master of Science Thesis

Examiners: Professor Jarmo Harju and
senior researcher Marko Helenius

Examiners and topic approved in the
Computing and Electrical Engineering
faculty council meeting on 8 December
2010

 II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
NIEMELÄ, ANTTI: Traffic analysis for intrusion detection in telecommunications
networks
Master of Science Thesis, 67 pages, 9 Appendix pages
03 2011
Major: Communication networks and protocols
Examiners: Professor Jarmo Harju and senior researcher Marko Helenius
Keywords: Anomaly detection, intrusion detection system, feature extraction,
network security.

Threats from the Internet have become more and more sophisticated and are able to

bypass the basic security solutions such as firewalls and antivirus scanners. Additional

protection is therefore needed to enhance the overall security of the network. One

possible solution to improve the security is to add an intrusion detection system (IDS)

as an additional layer in the security solutions.

In order for the anomaly detection based IDS to decide what is normal and what is

abnormal in the data monitored, it has to have a point of comparison. In the context of

networks, this point of comparison is known as a model of normal network traffic. Once

the model is created, it is then used as a basis when traffic is monitored.

Feature extraction plays an important role when creating a model of the network

traffic. The features should represent the traffic flows as good as possible. The

challenge is on finding out the most suitable features for the anomaly detection based

IDS, for it to efficiently detect intrusion from the data monitored.

Through analysis of different attacks, it is possible to find out what their effect is to

the traffic flows. Common attacks; denial of service, probing and attacks against the

services of the network are taken as a basis for the evaluation. After analysing the

attacks it was seen that attacks of similar type also have similar effect to the network

traffic and thus, subsets of features were formed for each attack type.

The results, however, show that it is clear that more investigation on the differences

between operating systems and attacks against them need to be done in order to find out

more suitable sets of features. The results also showed that attacks of similar type have

different level of effect to the network traffic. Although there were huge differences in

the results, they were still more or less according to the expectations. Nevertheless, the

results can be thought of as an encouragement, that it is possible to use smaller feature

groups to detect specific attack categories with less processing requirements.

 III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Signaalinkäsittelyn ja tietoliikennetekniikan koulutusohjelma
NIEMELÄ, ANTTI: Tietoliikenneverkon liikenneanalyysi tunkeutumisen
havaitsemisjärjestelmälle
Diplomityö, 67 sivua, 9 liitesivua
03 2011
Pääaine: Tietoliikenneverkot ja protokollat
Tarkastajat: Professori Jarmo Harju ja vanh. tutkija Marko Helenius
Avainsanat: Väärinkäytöksen havaitseminen, poikkeavan käytöksen
havaitseminen, tunkeutumisen havaitsemisjärjestelmä, verkon tietoturva

Perinteisesti tietoturvaa ovat ylläpitäneet palomuurit ja virustentorjuntaohjelmat. Niiden

kyky tunnistaa sekä ehkäistä tietoturvaa rikkovien tahojen toiminta on kuitenkin

saavuttanut äärirajansa. Valitettavasti hyökkäysmenetelmät ovat kehittyneet nopeaa

vauhtia yhä älykkäämmiksi ja kykenevät läpäisemään nämä perinteiset

turvamenetelmät. Yksi mahdollinen ratkaisu ongelmaan on lisätä verkon turvakerroksiin

älykkäämpiä menetelmiä, kuten tunkeutumisen havaitsemisjärjestelmiä (engl. intrusion

detection system, IDS).

Jotta poikkeavan käyttäytymisen havaitsemiseen perustuva IDS toimisi tehokkaasti

teleoperaattoriverkoissa, tulisi tutkia minkälaista tietoa verkkoliikenteestä olisi

kerättävä, jotta tuloksekas tunkeutumisyritysten havainnointi olisi mahdollista.

Perimmäisenä ajatuksena on etsiä sopivimmat piirteet verkkoliikenteestä, joiden

perusteella voidaan luoda mahdollisimman kuvaava malli verkon normaalista

toiminnasta ja malliin vertaamalla havaita poikkeamat verkkoliikenteestä.

Palvelunesto- ja verkon urkintahyökkäykset sekä hyökkäykset verkon palveluita

kohtaan edustavat tyypillisimpiä uhkia Internetistä. Näitä hyökkäystyyppejä

analysoimalla havaittiin kuinka samantyyppisillä hyökkäyksillä on samanlainen

vaikutus verkkoliikenteeseen. Näiden hyökkäystyyppien perusteella luotiin piirrejoukot,

jotka otettiin vertailun kohteeksi.

Tulosten perusteella on selvää, että tutkimustyötä käyttöjärjestelmien eroista ja

niihin kohdistuvista hyökkäyksistä tulee vielä jatkaa, jotta voidaan löytää sopivimmat

piirrejoukot. Tulokset osoittavat myös, että samantyyppisten hyökkäysten aiheuttamien

vaikutusten välillä on suuria eroja. Vaikka erot eri piirrejoukkojen välillä olivat suuria,

saavutettiin niillä kuitenkin lähes odotusten mukaisia tuloksia. Näiden tulosten pohjalta

voidaan sanoa, että on mahdollista käyttää pienempiä piirrejoukkoja eri

hyökkäystyypeille ja siten suorittaa laskennallisesti kevyempää poikkeamien

havainnointia.

 IV

FOREWORD

This Master’s Thesis has been written as a partial fulfilment for the Master of Science

Degree at Tampere University of Technology (TUT). The work was done for Nokia

Siemens Networks (NSN) as a part of the Future Internet program of TIVIT (Finnish

Strategic Centre for Science, Technology and Innovation in the field of ICT).

I wish to thank my supervisors Perttu Halonen and Kimmo Hätönen for providing

the opportunity to work in NSN and write this thesis under their guidance.

I would like to express my gratitude to Professor Jarmo Harju and senior researcher

Marko Helenius from TUT for the valuable feedback and effort they put in guiding me.

I would also like to thank Pekka Kumpulainen from TUT for his valuable advices.

Furthermore, I wish to thank my colleagues in NSN for cheering me up when I needed

it the most. Especially I would like to thank Alexander Zahariev for his valuable

comments and advices.

This thesis would not have finished without the love and support from my girlfriend.

Thank you Iiris for being there for me through this process.

On 20th of March 2011, in Tampere, Finland

Antti Niemelä

antti.j.niemela@gmail.com

 V

CONTENTS

1 INTRODUCTION .. 1

2 INTRUSION DETECTION IN TELECOMMUNICATIONS NETWORKS 3

2.1 Telecommunications Networks ... 3

2.1.1 Infrastructure of Telecommunications Networks 3

2.1.2 Threats against Telecommunications Networks 5

2.2 Intrusion Detection Systems ... 8

2.2.1 Intrusions and Anomalies .. 9

2.2.2 Architecture of IDS .. 9

2.2.3 IDS in Layered Defence In-Depth Strategy 10

2.2.4 False positives and False negatives ... 10

2.2.5 Misuse Detection ... 11

2.2.6 Anomaly Detection .. 12

2.2.7 Prior Research on Intrusion Detection ... 15

2.2.8 Lincoln Laboratory Dataset ... 17

2.3 IDS in Telecommunications Networks ... 19

2.3.1 IDS placement Challenges ... 19

2.3.2 Centralized Model.. 20

2.3.3 Distributed Model .. 20

3 FEATURES FOR IDS .. 22

3.1 Feature extraction .. 22

3.1.1 Feature Selection.. 22

3.1.2 Feature Reduction .. 23

3.1.3 Challenges in Feature Extraction ... 24

3.2 Audit Data Sources ... 25

3.2.1 Network Data ... 25

3.2.2 Host-based Security Logs .. 26

3.3 Features used in Prior Art ... 27

3.3.1 Flow-based Features .. 27

3.3.2 Packet-based Features .. 32

3.3.3 SNMP-based Features.. 33

3.3.4 Features used in User Equipment monitoring.................................... 34

3.3.5 Features used in Ad-Hoc Network monitoring 35

4 FEATURE SELECTION .. 37

4.1 Feature Analysis .. 37

4.1.1 Attack Scenarios .. 38

4.1.2 Prior Art ... 43

4.2 Feature Subsets ... 44

5 EVALUATION OF THE FEATURE SUBSETS ... 46

5.1 Anomaly Detection and Feature Subset evaluation .. 46

5.1.1 Training and testing Data ... 46

5.1.2 Anomaly Detection Tool ... 47

 VI

5.1.3 Anomaly Detection Method... 48

5.2 Preparing the Data ... 49

5.2.1 Pre-processing the Data ... 50

5.2.2 Packet Data into Flow Data ... 50

5.2.3 Feature extraction .. 51

6 RESULTS ... 52

6.1 Detected Attacks ... 52

6.1.1 Detection Rates of Attacks .. 52

6.1.2 Detection Rates of Attacks longer than 60 Seconds in Duration 53

6.1.3 Detection Rates of Selected Attacks .. 54

6.1.4 Detection Rates of Selected Attacks longer than 60 Seconds in

Duration ... 55

6.1.5 Probe Attacks ... 56

6.1.6 DoS Attacks ... 56

6.1.7 Attacks against the mail server .. 57

6.2 True Positives and False Positives .. 58

7 CONCLUSIONS ... 60

REFERENCES .. 61

APPENDIX 1 NETWORK TRAFFIC HEADER FIELDS 68

APPENDIX 2 ATTACKS IN LINCOLN DATA 1999 .. 69

APPENDIX 3 COMPARISON OF KDD CUP 99 STUDIES 70

APPENDIX 4 TCPDUMP2SOM.SH .. 71

APPENDIX 5 PARSER.PY .. 72

APPENDIX 6 FEATURE SUBSET TABLES ... 75

 VII

TERMS AND ABREVIATIONS

2G 2nd Generation Mobile Communications

3G 3rd Generation Mobile Communications

AAA Authentication, Authorization and Accounting

AAFID Autonomous Agents for Intrusion Detection

AD Anomaly detection

AFRL Air Force Research Laboratory

ARGUS Audit Record Generation and Utilisation System

BN Bayesian Network

BSC Base Station Controller

BTS Base Transceiver Station

CART Classification and Regression Tree

CIDF Common Intrusion Detection Framework

CIDS Central Intrusion Detection System

CPU Central Processing Unit

CSP Communications Service Provider

CSV Comma Separated Value

DARPA Defense Advanced Research Projects Agency

DNS Domain Name System

DoS Denial of Service

DPI Deep Packet Inspection

DR Detection Rate

D-SCIDS Distributed Soft Computing Intrusion Detection System

EMERALD Event Monitoring Enabling Responses to Anomalous Live

Disturbances

EMP Electromagnetic Pulse

ePDG Evolved Packet Data Gateway

Feature Synonym to variable, descriptor and parameter used in IDS.

GPRS General Packet Radio Service

GrIDS Graph-based Intrusion Detection System

HIDS Host based intrusion detection system

HLR Home Location Register

HRPD High Rate Packet Data

HSGW HRPD Serving Gateway

HSS Home Subscriber Server

ICMP Internet Control Message Protocol

ID Intrusion Detection

IDS Intrusion Detection System

IMS IP Multimedia Subsystem

IP Internet Protocol

 VIII

IP packet quintuple IP packet destination and source address and port together

with protocol identifier forms the IP packet quintuple

IPS Intrusion Prevention System

LTE Long Term Evolution

MME Mobility Management Entity

NIDES Next-Generation Intrusion Detection Expert System

NIDS Network based Intrusion Detection System

P-GW Packet Data Network Gateway

PCA Principal Component Analysis

PCRF Policy and Charging Rules Function

PSO Particle Swarm Optimization

RAN Radio Access Network

RNC Radio Network Controller

RST Rough Set Theory

R2U Root to User

S-GW Serving Gateway

SGSN Serving GPRS Support Node

SNMP MIB Simple Network Management Protocol Management

Information Base

SSL Secure Socket Layer

TCP Transmission Control Protocol

TRCNetAD Telecommunication Research Center Network Anomaly

Detection

U2R User to Root is an attack category in the Lincoln laboratory

dataset

VoIP Voice over IP

VLR Visitor Location Register

VPN Virtual Private Network

WLAN Wireless Local Area Network

xDSL Digital Subscriber Line, the letter x before the abbreviation

means all the DSL technologies such as ADSL, ADSL2 etc.

1

1 INTRODUCTION

In the 21st century the development of telecommunications networks has taken giant

leaps from circuit and packet switched networks towards all-IP based networks. This

development has created a unified environment where communication of applications

and services (data and voice) are being transferred on top of the IP-protocol.

At the same time the data transmission speeds in both uplink and downlink have

increased significantly from the second generation (2G) of radio access networks to the

third generation (3G) of radio access networks. Also the devices that subscribers of

telecommunications networks are using have been developing and the boundary

between computers and mobile phones has become unclear. With the modern mobile

devices, also known as smart phones, the subscriber can do almost everything that can

be done with basic personal computers. This means that the full content of the Internet

is now also in the pockets of each smart phone owners.

Although the development of communication networks has been towards a better

sustainability of technologies it has also raised new unwanted possibilities. Threats that

were applicable only in the fixed networks are now feasible in the radio access

networks. When taken into account that threats are becoming more and more

sophisticated it also means that the security systems have to become more intelligent.

The basic security measurements such as firewalls and antivirus scanners are in their

limits to cope with the overgrowing number of intelligent attacks from the Internet. A

solution to enhance the overall security of the networks is to increase the security layers

with intrusion detection systems.

To understand what role intrusion detection has in telecommunications networks it

can be thought through a simple example. Think of intrusion detection as a security

guard that is guarding the front gate of a factory premises. The premises of the factory

represent the network of a mobile operator and the fence surrounding the factory is the

operator’s firewall. Employees of the factory represent the traffic in the operator’s

network.

It is know that factories are well protected and they do not want to let people inside

the premises that do not have the required clearances. The fence or firewall in this case,

is in charge to keep all unwanted visitors outside the factory premises. Just like in a

firewall, a fence has holes (gates) in it to let employees move in and out of the factory

premises. These holes in the fence though leave the factory vulnerable to the unwanted

visitors and this is why the factory has a security guard guarding the gate.

 2

Depending on the role that the security guard is in, while he is monitoring the people

going in and out of the factory premises, he either notifies the head of security when he

detects a suspicious looking person walking through the gate. Or he steps in and

prevents this person from entering the factory premises.

The basic functionality of an intrusion detection system is the first example of the

security guard. IDS generate an alarm when it detects something suspicious and then the

security personnel of the network operator further investigate the cause of the alarm.

In order for the security guard to do his job well, a set of rules and instructions are

needed. In the context of IDS in telecommunication networks the rules and instructions

are algorithms that IDS uses to analyse network traffic. The question is: “How should

these rules and instructions be defined and, especially, what are the criteria to decide

what features should be monitored?”

This thesis takes various approaches to answer to the question how the features

should be selected from the network traffic so that the intrusion detection system can

efficiently detect threats in the environment of telecommunications networks.

The rest of the thesis is organized in the following manner. Chapter 2 introduces the

basics of intrusion detection systems and how it fits into the environment of

telecommunications networks. In addition, a discussion on the prior art of research on

the field of intrusion detection is given in this chapter.

Chapter 3 gives an overview of feature extraction methods for intrusion detection

systems and what challenges the environment sets to the extraction. In addition the

features used in the research field of network based intrusion detection systems are

discussed in the end of this chapter.

Chapter 4 discusses the approaches to the feature extraction used in this thesis. The

results of these approaches are summarised in the end of this chapter.

Chapter 5 describes the evaluation process of feature subsets and the data that is

used as a basis in the evaluation. The results of the feature performance analysis are

discussed in Chapter 6. Conclusions are presented in Chapter 7.

 3

2 INTRUSION DETECTION IN

TELECOMMUNICATIONS NETWORKS

Introduction to telecommunications networks and intrusion detection systems’ role in it

is discussed in this chapter. In addition a brief overview of features that were used in

prior research of IDSes is presented.

2.1 Telecommunications Networks

Development in telecommunications networks has been going towards mobility with

radio access networks. For example, in Finland, many operators have been pulling up

their copper wires in rural areas and are replacing digital subscriber lines (xDSL)

connections to 3G subscriptions. According to news articles reported in HS.fi [1] and

Tietokone.fi [2] TeliaSonera announced its’ plans on pulling up the copper wires.

In a way the development or some may say non-development of networks has been

from local area networks (LAN) towards radio access networks (RAN) for its’ easier

and cheaper set-up in rural areas where the density of network infrastructure is not

sufficient. Despite the fact that in Finland there has been a discussion [3] about

developing a country wide optical fibre network, for the time being the only option for

many is still to use RAN connections.

2.1.1 Infrastructure of Telecommunications Networks

From the subscriber’s point of view it might look like the infrastructure of

telecommunications networks consists only from a group of radio towers that are

scattered all around the cities and rural areas. In reality the underlying infrastructure of

the network is a far more complex thing than just the base stations and radio interfaces.

Telecommunications networks have a lot in common with enterprise networks. In

enterprise networks there are hundreds of computers and users connected together with

routers, switches and interconnected subnets. In telecommunications networks there are

the same elements as in enterprise networks but in addition there are also multiple radio

access networks (RAN) from GSM to LTE and a huge amount of fixed and mobile

users. The infrastructure of telecommunications networks can be divided into three sub-

networks; access network, core network and service network. This division is illustrated

in Figure 2.1.

 4

Access Networks

The part of the network that connects and gives access to subscribers to their service

provider is called access network (see Figure 2.1). Access networks can be further

divided into fixed line access networks (Ethernet, xDSL, and Cable) and into radio

access networks (2G, 3G, LTE, CDMA and WLAN). Another term used in

telecommunications networks is a subscriber network. The subscriber network is a

combination of the access network together with subscriber’s user equipments such as

mobile phones, laptops etc. [4]

Radio access networks have been evolving towards all IP based networks but at the

same time older radio techniques has to be supported. According to global GSM

incremental market analysis [5] done by ZTE, in 2010 the GSM and 2G are still the

most commonly used technique to use calling and data services globally. Over 80% of

global mobile subscribers use only GSM accounts while 3G and CDMA share the rest

20%. This is why in radio access networks there are still different base stations; base

transceiver station (BTS) for 2G, Node B (different name for BTS) for 3G and evolved

Node B (eNode B) for LTE. Different radio techniques require different controllers;

base station controller (BSC) for 2G and radio network controller (RNC) for 3G. In

LTE and CDMA all the mobility management operations are handled by mobility

management entity (MME) in the core network. [4, pp. 44-48]

Evolved Packet Core Network

The intermediate network that connects access networks to service networks is called

evolved packet core network (see Figure 2.1). In addition to operating as an

intermediate, core network is responsible for circuit-switching and packet-switching

operations, subscriber charging, AAA services and subscriber’s mobility management

services. [4, pp. 44-48]

Because of the wide variety of access networks the core network has evolved into a

complex environment. The core network has to support older radio access techniques

where voice and data is separated between packet-switched and circuit-switched

networks (2G, 3G) and at the same time it has to provide services for the newer radio

access networks (LTE) where voice and data is not separated anymore. [4, pp. 44-48]

In a 2G network the packet-switching operations for data transmissions and circuit-

switching operations for calls are provided by serving GPRS support node (SGSN). In

evolved packet core, the 3G is using SGSN only for the circuit-switching operations.

The data transmissions in 3G are handled by serving gateway (S-GW) together with a

packet data network gateway (P-GW). In LTE voice and data is not separated anymore

and therefore all the packet data operations are handled by S-GW together with P-GW.

High rate packet data serving gateway (HSGW) is providing voice and data operations

for the CDMA radio networks. [6, p. 156] Evolved packet data gateway (ePDG) is

providing packet data operations for the WLAN. [6, pp. 24-29]

 5

In addition to these previously mentioned elements in the core network there are

also home and visitor location registers (HLR/VLR) for the subscriber mobility

management, AAA for the subscriber authentication, authorization and accounting

functions, charging for the subscriber billing services, policy and charging rules

function (PCRF) for quality of service and charging related policies. [4, pp. 44-48]

Service Network

Service network provides services like connection to the Internet. Service network is

also responsible for providing access to company intranets and operator specific

services. In addition to these it also provides access to IP multimedia subsystem (IMS)

for multimedia and voice applications such as VoIP. [4, pp. 44-48]

Figure 2.1 Telecommunications networks’ infrastructure [6, p. 17; 156]

2.1.2 Threats against Telecommunications Networks

According to CERT [7] the attack sophistication has increased during the past 30 years

while at the same time the intruder knowledge has been coming down. This

development is illustrated in Figure 2.2. Reason for the increasing sophistication of

attacks can be explained with the fact that the use of Internet has become more common

and the security solutions protecting the Internet users have become more intelligent. Of

course the computers and operation systems have also become more secure. In order to

penetrate intelligent security measures the attacks have to be intelligent also. The

downward trend in intruder knowledge can be explained by the wide availability of

freely distributed applications that can be used to perform attacks. In most cases the user

of this kind of an application does not even know what he or she is doing.

 6

Figure 2.2 Attack sophistication vs. intruder knowledge according to Carnegie Mellon

University [7]

Another security concern in modern communication networks is that the networks are

vulnerable to threats despite the fact that they might not even be connected to the

Internet. One example of this concern was confirmed in July 2009 when Internet worm

Stuxnet was discovered. Stuxnet was targeting particular process control systems,

especially industrial installations, such as uranium enrichment plants. What makes

Stuxnet so efficient is its self-replicating functionality. Stuxnet can replicate itself into

USB devices and network shares and then further spread into networks that are not

directly or not at all connected to the Internet. [8]

As the development of telecommunications networks has been toward all-IP-based

networks and services, it has also created new possibilities for malicious entities to

perform illegal activities. In addition the attacks that were applicable only for fixed

connections can now be used against mobile connections as well. Some of the typical

types of threats are discussed in the following paragraphs.

Reconnaissance

Attacks whose goal is to map the network services, used and open ports, operating

systems in use etc. are called reconnaissance attacks. Reconnaissance can be divided

into two groups; to the ones that come from the outside of the network (external

reconnaissance) and to the ones that come from within the network (internal

reconnaissance).

In external reconnaissance the attacker tries to gain information about the operator’s

network infrastructure and to find security vulnerabilities that could be later used as a

medium to get inside the network. In internal reconnaissance the attacker has access to

the internal network infrastructure either legitimately or illegitimately. The attacker

could use the same methods as in external reconnaissance to map the network

infrastructure from inside the network. In addition the attacker could access network

elements and computers with privileged rights and steal confidential information from

databases and information banks that holds knowledge about the network infrastructure.

 7

Denial of Service attacks

DoS attacks are trying to deny or limit the subscribers or operators use of services. This

can be achieved by exhausting all the resources (CPU, memory and bandwidth) of the

targeted subscriber’s user equipment to prevent it from using his or her device. This can

be achieved by publishing the targets phone number or IP address on public forums or

in other media that could cause a huge amount of people trying to access the target at

the same time.

According to Cisco the mobile data traffic will double every year to 2014. This will

set a huge pressure on CPS’s network operation and service quality as the amount of

traffic and the number of mobile subscribers keeps on increasing at the same time. [9]

The increasing amount of network traffic might as well cause similar situations as in

DoS by overloading the network infrastructure.

Malicious Content

The amount of malicious web sites poses a significant threat to UEs when the UEs are

getting more and more similar features as desktop computers. For example, the current

Linux phones have desktop computer’s performance and applications running on it. At

the same time the mobile web browsers are supporting java, flash and other media

players to display the webpage content as it is displayed with desktop computers. This

also means that the same threats that might cause damage to desktop computers are also

applicable with UEs.

According to McAfee lab’s 2010 third quarter threats report [8] the amount of new

malware Internet sites are constantly increasing. For example, in September 2010 the

amount of new malware sites fluctuated from a few hundred to more than four thousand

per day. The same figures are valid also with the amount of new phishing sites per day.

[8]

Malware attacks

In this scenario the infrastructure of telecommunications networks is targeted with a

sophisticated worm that has self replicating functionality to spread even further among

network elements.

Stuxnet [8] is an example of this kind of worm that spreads through USB-devices

and Internet shares towards a specific target. In stuxnet’s case the worm is targeting

specifically industrial controlling machines, especially in a certain country.

The attacker could modify Stuxnet in such way that instead of targeting process

control systems it would attack against network management elements. In the worst

case scenario this kind of a threat could lead into a critical failure in an operator or in

every operator’s networks. At worst this would mean that all communications would be

denied for the subscribers locally or even globally.

With a worm like Stuxnet is could be possible to sabotage the entire communication

network of a country. As can be seen from Figure 2.3 a targeted attack can be very

precise but at the same time it can spread widely. Figure 2.3 is a representation from

 8

McAfee Global Threat Intelligence Stuxnet map [8]. The circles illustrate the amount

of Stuxnet infections in that area. The bigger the circle the more infections there are in

that area. Although in the case of Stuxnet it is believed that its main target was in Iran

but today India is suffering the most [8].

Figure 2.3 Stuxnet infections according to McAfee Global Threat Intelligence [8]

2.2 Intrusion Detection Systems

Intrusion detection system (IDS) can be software or hardware that monitors for

intrusions and anomalies from the environment it is set to guard. In general the IDS is a

security monitoring tool like a firewall that tries to detect and possibly prevent

malicious activity.

Two main techniques for intrusion detection exist based on what they can detect.

These two techniques are misuse detection and anomaly detection. Misuse detection and

anomaly detection systems can be further divided into two groups based on the

detection method; into behaviour based and into knowledge based IDS. Behaviour

based IDS monitor behaviour deviations of the system in order to detect intrusions and

anomalies. Knowledge based IDS monitors a system using patterns of known intrusions.

[10]

Basic functionality of IDS is to act as a passive alerting system. This means that

once intrusion is detected the IDS generates an alarm and provides all the relevant

information (time, IP packets, etc.) that triggered the alarm. IDS that operates in active

mode, reacts to detected intrusions by using countermeasures to prevent the access of

the intrusive data accessing the system. Active IDSes are called intrusion prevention

systems (IPS). For example, IPS can alter the firewall rules, change routing tables, limit

network bandwidth or just disconnect the connection. IDSes can be further divided into

two systems depending on where the IDS is placed. The IDS can be either a Network

based IDS (NIDS) or Host based IDS (HIDS). Network intrusion detection system

 9

monitors for intrusions in network traffic and host intrusion detection system monitors

the behaviour of a local machine. [10]

2.2.1 Intrusions and Anomalies

In the same context of IDS, words intrusions and anomalies are commonly used. The

term intrusion is a bit confusing as the system that tries to detect intrusions is also a

general term for the system that tries to find anomalies.

From a security point of view, intrusion is a malicious activity against the

confidentiality, integrity or availability of information. An anomaly is a deviation from

what is thought of as normal. [10] The difference between an anomaly and intrusion is

somewhat depending on the environment. For example, intrusion is always more or less

a deviation from normal behaviour. But on the other hand an anomaly is not always an

intrusion. For example, a failure on a network element might cause abnormal activity in

the network but it is not an intrusion. In this document the word IDS is therefore used to

describe a system that can be used to detect both, intrusive and anomalous behaviour.

2.2.2 Architecture of IDS

Intrusion detection systems are constructed from three components; sensors, analyser

and user interface. Sensors are collecting data such as network traffic, log files and

system trace files. Once the data is collected it is then forwarded to the analyser.

Analysers or detection engines are responsible for determining if there was an intrusion

among the data. After an intrusion is detected the analyser’s output is either an alarm or

action. The sensor and analyser can be a single system or they can be separated into

individual components depending on how the IDS is constructed. For example, one

analyser might get traffic data from multiple sensors or the sensor might be embedded

into the analyser. The user interface provides the means for the administrator to monitor

the output of an analyser and configure analyser and sensor operations. The general

architecture of intrusion detection system is illustrated in Figure 2.4. If the IDS is an

reactive type, the components can also conduct an action when intrusion is detected, to

prevent any further damage to the system. These preventions are illustrated as action

arrows in the Figure 2.4.

Figure 2.4 IDS architecture

 10

2.2.3 IDS in Layered Defence In-Depth Strategy

Usually the IDS is working behind firewalls in order to detect intrusions that firewalls

have missed. The IDS or IDS sensor may as well be placed before the firewall in order

to collect illegal traffic data that would otherwise be rejected by the firewall. In some

cases it is useful to collect such information in order to recognise and to know when the

network is being targeted. In general IDS gives an extra protection layer to the defence

in-depth strategy [11]. An example of the defence in-depth strategy is illustrated in

Figure 2.5 where on the left are some of the possible threats from the Internet

endangering the overall security of the telecommunications networks operation.

Figure 2.5 Layered defence in-depth strategy

The basic idea in layered defence in-depth strategy is to enhance the overall security of

the protected system. This can be achieved by adding multiple security measurements

and improve security awareness on all levels from people to operations. In each of the

layers some parts of the traffic that might be malicious are detected and prevented from

accessing the targeted network. [11]

In the context of telecommunications networks this means that the overall security

can be enhanced by adding IDS and possibly IPS functionality into strategic places, like

for example, in outer gateways. IDS’s role in this defence in-depth strategy is to detect

possible threats that have passed firewall rules and antivirus scanners.

2.2.4 False positives and False negatives

In order to evaluate the IDS’s performance and detection accuracy there are four

possible occurrences whose ratio is monitored. These occurrences are illustrated in

Figure 2.6.

False positives are legal occurrences that are incorrectly marked as anomalous. True

positives are occurrences that are correctly marked as anomalous. False negatives are

anomalous occurrences that are missed by the detector and therefore are not marked as

 11

anomalous. True negatives are occurrences that are correctly marked as legal activity. In

order to find out whether the anomaly or intrusion is a false positive or false negative, it

has to be investigated by a network operator. [10] These occurrences are illustrated in

Figure 2.6. where the vertical axis presents how activity is detected by IDS and the

horizontal axis show what the activity actually is.

Figure 2.6 False positives, true positives, false negatives and true negatives

From the network operator’s point of view the most risky situations are the false

negatives. Possibly intrusive activity that passes through IDS as normal and legitimate

activity might harm the whole network and therefore it would affect every subscriber

using the network. False positives are not as harmful as false negatives because it will

affect only one subscriber. Of course from the subscribers’ point of view this would

seem like bad service when the subscriber’s access to the network is denied. In most

cases though, user’s network activity is not completely denied. [10]

2.2.5 Misuse Detection

Misuse detection can be thought to behave like a virus scanner. Virus scanners are

looking for known patterns or signatures of viruses, in the same manner misuse

detection is based on known intrusion patterns and signatures. These patterns can be, for

example, certain character strings in IP packet contents. In short it can be said that

misuse detection deals with known attacks. As such it can be used to analyse network

traffic efficiently for known intrusions. [10]

The downside of misuse detection is that it can be avoided by changing the attack

pattern slightly so that it will not match the pattern anymore [12]. It is also problematic

to write the signatures so precisely that they match to all possible variations of intrusive

activities and at the same time avoids matching to non-intrusive activities. Just like virus

scanners, IDSes that are based on misuse detection needs to be updated regularly for the

latest patterns and signatures. [10]

 12

Most of the available IDSes use misuse detection because it has been studied the

most and in a way it is easier to match activities based on known attack patterns rather

than finding out whether the ongoing activity is malicious or not just by analysing the

activity without previous knowledge of it. This is where misuse detection and anomaly

detection differentiate the most. [10]

2.2.6 Anomaly Detection

As misuse detection was based on previously known patterns anomaly detection may

detect also something that has not yet been discovered. It is also worth noting that while

intrusion detection assumes all the matching activities as malicious, anomaly detection

does not assume all anomalies necessarily malicious. [10] It depends on the

environment and the rules and regulations whether the detected anomaly is malicious or

not.

Network traffic anomaly detection is based on two presumptions. The first

presumption is that network traffic has distinguishable characteristics in normal

conditions. A model of these normal conditions can be created with parameters. The

second presumption is that deviations from this normal model are rare and potentially

might be a result of intrusive activity. These two presumptions are according to what is

presented in the field literature. [13; 14; 10]

Anomaly Detection as a Process

As a process, anomaly detection can be divided into two phases. In the first phase a

model of normal network traffic is created. This model can be derived or learned from

training data using model generation algorithms or mathematical models. In the second

phase traffic is monitored for deviations from the normal model. [10]

The model of normal network traffic is created by using features from the traffic.

Feature in the context of anomaly detection means a value or symbol which describes

the network traffic. These features should represent the traffic behaviour and

characteristics but in the same time they should not contain any redundant information

in order to be as lightweight as possible. In the field literature, the word, feature has

numerous synonyms such as variable, parameter and descriptor.

In order to create a model of the normal network traffic, it needs to be clean from

malicious activities and at the same time it needs all the variations of the environment it

is monitoring. Generating such traffic data is difficult and ready data sets like Lincoln

laboratory datasets (see Section 2.2.8) are rare. It is difficult to simulate normal traffic

in a laboratory environment as the traffic never is evenly distributed between different

network protocols. Also network element failures and performance fluctuates

significantly in a normal network which is not easily simulated in a laboratory. [13]

Once the model of normal network traffic is created, traffic is then monitored for

deviations from the model. Some analysis is needed to decide whether the deviation is

intrusive or malicious. Normally this analysis is done by a network security guard. As

the detected anomalies might be previously unknown it is difficult to know what is

 13

actually causing the anomaly and whether it is intrusive or not. [13] This anomaly

analysis process needs to be supported by as much information as possible, so that the

security guard could work efficiently. In anomaly detection, there is a wide variety of

approaches to choose from and some of them are discussed in the following paragraphs.

Statistical based Anomaly Detection

In a statistical based method anomalies are detected from statistics. Statistical based

methods create models based on history. These models are then compared to the current

situation and deviations between these models are considered as anomalies. Once a

deviation is monitored its severity is then evaluated and graded. The more severe the

anomaly is the higher the grade is. [15] For example, the average number of times a user

has accessed the network daily is compared to the current amount. If the current number

of access to the network exceed the average number by one or two it is not maybe

considered as a severe anomaly. But in case the number is, for example, ten times or

even hundred times higher, it might be a severe anomaly. This of course depends on

how the grading rules are defined.

Rule-modelling based Anomaly Detection

In a rule-modelling based method rules are defined for the system and once these rules

are broken, those instances are marked as anomalies. [10] Basically this is similar to

how firewalls operate. Firewalls have predefined rules which are matched against

network traffic. If the traffic is not in conflict with these rules it is then allowed to pass

through. Everything that is against these rules is dropped. In anomaly detection this

would mean that everything that is against the rules is thought of as an anomaly.

Threshold based Anomaly Detection

In a threshold based method, thresholds are defined for the data deviation monitoring.

Once a threshold is crossed, that instance is marked as an anomaly. [10] In a way,

threshold based anomaly detection is a combination of statistical based and rule-

modelling based methods. Threshold itself is a rule that is created based on statistics.

The network administrator knows, for example, how high the CPU usage is on a

network element. Therefore he can set a threshold that creates a rule which says that

CPU usage cannot be more than 80 percent. An alarm is triggered once this threshold is

crossed.

Machine-learning based Anomaly Detection

In a machine-learning based method anomaly detection models are constructed based on

past behaviour. The learning algorithm analyses, for example, previously recorded data

sets containing network traffic and create a model of normal behaviour. After the

learning period the detector monitors deviations from this created model. A machine-

learning based detector can adapt to changes in the network traffic when, for example,

 14

some application is distributed to all local machines in the network and this application

generates previously unknown traffic to the network. [16]

Payload based Anomaly Detection

In a payload based method, anomaly detection models are created based on the

application payload data to a specific host and port. In addition to this a standard

deviation is calculated based on the payload length. Once the model is created, all the

traffic coming in to a specific port is analysed and the payload length is matched against

the model’s average length. If the difference is too large, an alarm is triggered. [17]

Protocol based Anomaly Detection

A protocol based anomaly detection monitors protocols for deviations from the protocol

standard specifications. The detector creates models based on TCP/IP protocol

specification which is then matched against the network traffic. If the monitored traffic

operates with a protocol that is in conflict with the specification, it is then marked as an

anomaly. Most of the protocol based anomaly detectors are built as state machines. This

is understandable as all connection oriented protocols have a state. The detector is

therefore monitoring transitions from one state to another and if the anticipated

transition is different from the transition that has occurred, an alarm is triggered. [18]

Graph based Anomaly Detection

A graph based anomaly detection creates activity graphs of hosts and the activity in a

network. These activity graphs describe how the activity is spreading in a network. For

example, if the activity graph becomes a huge tree-like graph the activity is then

considered as anomalous or a worm spreading to be more precise. [19]

Signal Processing Techniques based Anomaly Detection

Methods that are based on signal processing techniques are also researched widely. For

example Fontugne et al. [20] used image processing-based approach in their anomaly

detection system. Their system is based on pattern recognition, where anomalous traffic

flows are detected through behaviour-based signatures. The most common interest has

been on using signal processing methods to enhance the overall efficiency and at the

same time reduce the amount of false positives. [21]

Data Mining based Anomaly Detection

A data mining based anomaly detection tries to automatically discover consistent

patterns of features from large stores of data that describe the behaviour of network

traffic, user or programs. Classifiers are constructed based on these features which are

used to classify the monitored features into anomalies and known intrusions. Data

mining is an example of method that combines algorithms used in different methods

like in machine-learning, statistical and signal processing based methods. [22]

 15

All of these methods have their pros and cons depending on what is the monitoring

target. A protocol based detection method is efficient on analysing network protocols

but is not capable of detecting malicious payload. The same applies vice versa, payload

based detection method can be efficient in detection malicious data in payloads but is

not efficient in detecting intrusive use of protocols. In some cases a combination of

different methods is more suitable. The environment and its features have to be

evaluated in order to choose the most efficient setup to detect intrusions in that specific

environment.

2.2.7 Prior Research on Intrusion Detection

Intrusion detection has been studied widely since Anderson introduced the concept of

intrusion detection in 1980 [23]. However the initial push forward in the field of IDS

research was received seven years later in year 1987, when Denning introduced an

intrusion-detection model, also known as Denning’s model [14].

Denning’s Model

Denning presented an idea that malicious behaviour could be perceived from system use

by comparing it against a model of a normal system use. Denning’s model describes the

operation of a host based IDS that is used to monitor usage of a local machine.

Intrusions in her model are detected by first creating profiles of normal system usage

and then the system’s usage is monitored and compared against these pre-defined

profiles. Denning’s idea is that malicious usage of the system can be detected as a

deviation on normal usage profile. [14]

Denning’s model has been widely used as a basis for different intrusion detection

systems and its influence can be seen on the prior research on intrusion detection where

the focus has been mainly on host based IDS. Axelsson [24] published a survey on

intrusion detection systems in year 2000 in which he listed 20 research projects from

years 1988 to 1998. From the 20 studies on IDS there were 14 that were completely host

based, three that operated both in host and in network and two that were completely

network based. [24]

Gates et al. [13] challenges the use of Denning’s model as an inclusive model for all

types of IDSes (NIDS and HIDS). Their argument is that as Denning’s model is

designed to be a model for host based IDS. As such without modifications it might not

be usable as a basis for network IDS. Second argument from them was that Denning’s

model was created in 1987 when detecting system behaviours on a local machine was

more important than analysing the network traffic, the model itself might be too old to

meet the requirements of modern environments.

Network Intrusion Detection System Researches
From 21st century onwards, while networks have been developing rapidly, network

based IDS has received more attention. Change of focus in IDS research from HIDS

towards NIDS can also be explained by the research value. HIDS has been studied

 16

widely and new findings on that field are difficult to find. NIDS instead is a more

interesting topic because network based intrusions are constantly increasing. This gives

new opportunities for the research field to discover new methods that are able to detect

previously unknown threats and publish a research paper from it.

Another reason for NIDS popularity as a field of research is that firewalls have not

developed as fast as NIDSes have. Firewalls are able to give basic security but they are

not able to cope with constantly evolving attacks. Currently the de facto standard in

network intrusion detection is Snort [25] which could be easily and falsely described as

a network firewall.

Snort is an IDS/IPS that combines signature, protocol and anomaly based intrusion

detection methods to efficiently detect and prevent intrusions. Snort has been developed

by Sourcefire that also regularly provides rule updates to Snort [26]. In addition to

Snort, some network based IDS studies are discussed in the following paragraphs.

Autonomous Agents for Intrusion Detection (AAFID)

AAFID was a project within the centre for education and research in information

assurance and security (CERIAS) in Purdue University. The project group consisted of

students and faculty who were interested in developing a new type of intrusion detection

system. Their approach is to use a distributed architecture of IDS agents to cover the

operation of the whole network. [27]

Common Intrusion Detection Framework (CIDF)

CIDF is a project in which a common framework for protocol and application

programming interfaces is developed. The project is currently coordinated by

Schnackenberg and Tung. Their goal is to make it easier for intrusion detection research

projects to share information and resources. [28] Based on the field literature it seems

that the CIDF is not widely used.

Distributed soft computing intrusion detection system (D-SCIDS)

D-SCIDS consists of multiple distributed IDS sensors over a large network. IDSes

communicate with each other directly or through a centralized server that also provides

advanced network monitoring. In their research Abraham et al. [29] evaluated three

fuzzy rule-based classifiers to detect intrusion in network and were then further

compared with other machine learning techniques. [29]

Next-Generation Intrusion Detection Expert System (NIDES)

NIDES is a real-time IDS that monitors user activity on multiple target systems. NIDES

is placed on a single host that analyses audit data collected from interconnected systems.

Intrusion detection on NIDES is a hybrid of misuse detection and anomaly detection; a

rule based signature analysis and a statistical profile-based anomaly detector. The

notation expert in NIDES means a system that is intelligently processing intrusion

 17

alarms to decide whether further investigation from a security guard is needed or not.

Further development of NIDES evolved into SRI’s project called EMERALD. [30]

Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD)

EMERALD is a tool for tracking intrusive activity through and across large networks.

The EMERALD consists of multiple polymorphically distributed detectors that can be

tuned independently. The detectors are EMERALD eXpert and EMERALD eBayes.

EMERALD eXpert is a signature based intrusion detector and EMERALD eBayes is an

adjustable anomaly detector. CIDF [28] is used as a basis for communicating

information between detectors. [30]

Graph-based Intrusion Detection System (GrIDS)

Staniford-Chen et al. [19] have presented a graph-based IDS that collects activity data

on computers and network traffic between them and then aggregates the information

into activity graphs. These graphs reveal the causal structure of network activity and

allow detection of large-scale attacks. Intrusions are detected by analysing the

characteristics of the activity graphs.

Spitfire

Spitfire was developed to enhance the work of NIDS operators. It can be used as a

replacement or as a supplement to the Cisco Net Ranger or ISS Real secure GUI.

Spitfire can be used in real time operation or it can be used to analyse historical

information. Spitfire provides a robust historical database of intrusion activity that can

be used to detect trends and patterns. [31]

2.2.8 Lincoln Laboratory Dataset

Lincoln laboratory data sets are “the first standard corpora for evaluation of computer

network intrusion detection systems” [32] and were created under the sponsorship of

Defense Advanced Research Projects Agency (DARPA) and Air Force Research

Laboratory (AFRL). [32]

Lincoln laboratory collected two dataset in consecutive years in 1998 and 1999. The

1998 dataset contains seven weeks of training data and two weeks of testing data which

contain network traffic and operating system logs. These datasets contain labelled

anomalies and network attacks mixed with normal network traffic. Similarly, the 1999

data set contains five weeks of training data and testing data but in addition to 1998’s

data set, the 1999 contains also attack free training data. This attack free data can be

used by IDS to create a model of normal network traffic. [32]

Lincoln laboratory datasets have been used many times by IDS researchers since

they were published. For example, Lu et al. [33] converted network packet logs into

network flow-based logs and used this converted dataset in their wavelet analysis based

IDS. In addition, the Lincoln laboratory 1998 dataset is also converted into connection-

based dataset which is also known as KDD cup 1999 [34]. The KDD cup dataset is

 18

especially used in evaluation of IDSes that are based on the machine-learning method.

For example, Abraham et al. [29] evaluated their distributed soft computing intrusion

detection system (D-SCIDS) with the KDD cup dataset.

The datasets have proven their usefulness in evaluation of the IDS in the past but

current IDSes and their evaluation should not rely only on these datasets. As time has

passed, mobile operators have more and more new network protocols flowing through

their networks and nowadays there are more applications that generate traffic into

modern networks. For example, at the time when Lincoln laboratory created these

datasets, there was no torrent traffic which is nowadays causing most of the network

traffic [35].

Attacks in Lincoln Laboratory Datasets

Both of the datasets contain four categories of attacks; denial of service (DoS), user to

root (U2R), remote to user (R2U) and probing attacks. In addition to these four

categories, the 1999 dataset contains a group which is called data. Full list of attacks

with descriptions are in Appendix 2.

Attacks that belong to the DoS category make the computing or memory resources

in the targeted system too busy or full. In general, the attacks exhaust resources in such

length that the use of the resources is completely denied to the legitimate users. [32]

U2R attacks exploit vulnerabilities in the targeted system to gain a root access. What

is similar to all of the attacks belonging to this category is that the attacker begins with a

normal user account that is obtained by other means such as social engineering or

phishing attacks. After accessing the targeted system with a legitimate user account the

attacker begins to exploit vulnerabilities in the system that would eventually lead into a

situation where the attacker is given root access rights. Common exploit is to cause a

buffer overflow in which the targeted system tries to read data into the buffer without

checking whether the data fits into the buffer or not. As a result the system crashes into

a state where the user accessing the system can change the user account into

administrator. [32]

Attacks belonging to the R2U are remotely exploiting vulnerabilities in the targeted

system in order to gain an unauthorised access. In general the attacker tries to gain a

local access as a user in the targeted system. An example of an attack belonging to this

category is a dictionary attack in which the attacker tries to repeatedly guess usernames

and passwords in the targeted system. [32]

Port scanning and network mapping are a good example of probing attacks. Both

attacks try to find out information of the targeted system or network. In general the

attacker tries to find out possible medium, for example an open port, which he or she

could exploit. [32]

Data category contains an attack called secret. It is an attack where a legitimate

system user performs actions that he or she is able to do but which are not allowed

according to the use policy. [32]

 19

2.3 IDS in Telecommunications Networks

IDS’s role in telecommunications networks is to enhance the overall security of the

network together with existing security measures such as firewalls and antivirus

scanners (see Section 2.2). IDS’s place in the telecommunications networks depends on

what it is supposed to monitor and protect. For example, IDSes could be monitoring

intrusions from either inside or outside the core network.

2.3.1 IDS placement Challenges

The placement of IDS depends on the type of the IDS. Host based IDSes are typically

placed on elements that provide important services to the network. Network based

IDSes on the contrary are more difficult ones. NIDS placement has to be balanced

between network coverage and allocated resources.

In access networks (see Figure 2.1) IDSes monitors for malicious payloads in transit

through the network and intrusive subscribers whose actions could disturb the service

which other subscribers are enjoying. In addition IDSes monitors for intrusions whose

target is inside the core network.

In a core network (see Figure 2.1) IDS monitors for intrusions that try to gain an

access to the core elements such as gateways, HLR/VLR and subscriber charging.

Access to these elements could harm the overall operation of the network. Preferable

IDS type in the core network would be host-based IDS on important network elements.

The HIDS instead of NIDS is preferred as it is known which elements are the most

important ones and which also requires protection. It should be taken into account that

in addition to monitoring the system the HIDS is located; it is also monitoring the

network traffic from and to the host.

If the used strategy is centralized IDS then its placement needs to be considered

more carefully than in case of distributed IDS. In Figure 2.7 possible locations of IDSes

in telecommunications networks are presented.

These locations in Figure 2.7 are based on Cisco’s IDS sensor deployment

considerations [36] in which the deployment is began by doing an analysis on network

topology. The key factors are Internet access points, extranet access points, remote

access and intranet separation. IDSes monitoring subscriber network provide security to

all key factors. To enhance the overall security IDSes should be placed inside the core

network, to monitor gateway towards Internet and extranets and in addition to these,

host based IDSes should be considered in subscriber equipments.

In addition to Cisco’s deployment considerations, a host-based IDS could be used in

the user equipments such as mobile phones and computers. Miettinen et al. [37]

proposed a unified IDS framework for mobile phones. The same framework could be

used with other mobile devices as well.

 20

Figure 2.7 Possible locations of IDSes in telecommunications networks

2.3.2 Centralized Model

The most common setup for IDS is to use one dedicated IDS, also known as centralized

IDS, which is monitoring all the incoming and outgoing links in the network. In Figure

2.8 this would mean that the central IDS would be in charge of all the intrusion and

anomaly detection operations.

Centralized IDS provides easier operation and management functionality in

comparison to a distributed model when the network size and the amount of traffic are

small. Scalability can become a problem when the network size grows.

2.3.3 Distributed Model

Distributed IDS model in telecommunications networks is presented in Figure 2.8 in

which the whole intrusion and anomaly detection workload is distributed among IDS

agents, also known as IDS sensor, together with the central IDS. [29]

IDS agents could be used as sensors to pre-analyse network traffic and generate

alarms from detected intrusions. These IDS agents could also pre-process the captured

packets to enhance the efficiency of the Central IDS (CIDS). They could, for example,

discard unnecessary information from the IP packet header fields. [29]

For example Handley et al. [38] normalize IP packet header fields to detect skilled

attackers that try to evade detection by exploiting ambiguities in the traffic stream. In

addition to header modification, IDS agents could also generate additional information

such as adding grades to alarms that would categorize the alarms into three groups

depending on the level of seriousness of the detected intrusion.

 21

The Central IDS would be responsible for gathering information from IDS agents.

CIDS would have a more advanced view of the network and its state and therefore it

could detect coordinated network wide attacks. [29]

Figure 2.8 Distributed intrusion detection model in telecommunications networks

Distributed IDS model is able to scale up into large size networks, especially when the

amount of monitored links is huge. Scalability is the most relevant feature in

comparison to the centralized model.

 22

3 FEATURES FOR IDS

Before anomaly detection based IDS can raise an alarm, it needs to have some kind of

model on what is normal traffic and what is not. It also needs to have predefined

methods in which traffic is filtered and possibly modified in order to cope with the huge

amount of data going through the network daily. This is why it is necessary to choose

among the data what is relevant for monitoring and what is not. Feature extraction plays

an important role in the choosing of relevant features for the IDS.

The basic principle in feature extraction is that the fewer features there are to be

monitored, the faster the IDS is. Vice versa the more features the IDS has to monitor the

less accurate it is. Of course this is not an absolute truth as there are cases in which

detection accuracy has increased after taking additional features into the monitoring.

These cases are discussed in more details in Chapter 3.3. The importance of feature

analysis is significant when evaluating the performance and detection rate of an IDS.

For example network traffic contains features that are redundant or their contribution to

the detection process is little. By reducing the amount of features the IDS’s

computational speed is improved and the overall performance is increased. These

principles are according to what is presented in the literature of the field. [39; 40; 41;

42]

3.1 Feature extraction

Intrusion detection systems can either have univariate approach or a multivariate

approach to detect intrusions depending on the algorithm used. In the univariate

approach a single variable of the system is analysed. This can be, for example, port

number, CPU usage of a local machine etc. In multivariate approach a combination of

several features and their inter-correlations are analysed. [10] In addition based on the

method the way in which features are chosen for the IDS can be divided into two

groups; into feature selection and feature reduction.

3.1.1 Feature Selection

In the feature selection method the features are either picked manually from the data

monitored or by using a specific feature selection tool. The most suitable features are

selected by handpicking from the feature spectrum based on the prior knowledge about

the environment that the IDS is monitoring. For example features that can distinguish

certain type of traffic from the traffic flows are picked for the network traffic model

training.

 23

The idea behind the feature selection tools is to reduce the amount of features into a

feasible subset of features that do not correlate with each other. Examples of feature

selection tools are Bayesian networks (BN) and classification and regression tree

(CART). Bayesian network is a probabilistic graphical model that represents the

probabilistic relationships between features. [43] CART is a technique that uses tree-

building algorithms to construct a tree-like if-then prediction patterns that can be used to

determine different classes from the dataset. [44]

Feature selection process is illustrated in Figure 3.1 On the left there are the features

(F0…FN) that are available from the data monitored, which is, for example, from

network traffic. On the right side is the output (F0...FM) of the selection tool. The

number of features in the output varies based on the selection tool used and the inter-

correlation of features in the input. Following the basic principles of feature analysis the

number of features in the output (M in Figure 3.1) is in most of the cases less than the

number of features in the input (N in Figure 3.1). However, it is possible that the output

is equal to the input.

Figure 3.1 Feature selection

If the Lincoln laboratory dataset is taken as an example the feature selection tool will

choose features from the network traffic header fields such as IP source address, source

port number and other features described in Appendix 1.

3.1.2 Feature Reduction

In the feature reduction method a new set of features is extracted based on the features

available from the data monitored such as network traffic data. The basic idea behind

feature reduction method is to reduce the total number of features used in the network

traffic model training. In general feature reduction means that during a certain period of

time a number of different features are monitored and a new set of features are then

calculated from this monitored data. For example the feature reduction tool could

monitor number of packets to a specific destination, within a certain period of time.

Then, once the monitoring period is over, a new feature (number of packets to that

destination) is available for the IDS.

Another example of a feature reduction method is a principal component analysis

(PCA). PCA is an algorithm that checks and converts the data set for all the correlated

variables into a set of uncorrelated variables, also known as principal components. [45]

Feature reduction process is illustrated in Figure 3.2. On the left there are the

features (F0…FN) that are available from the monitored data, for example, from the

 24

network traffic. On the right is the output (V0…VN) of the reduction tool. The number

of features in the output usually is less than in the input but it might as well be the same.

The new features (V0…VN), can be calculated based on a single feature or a

combination of multiple features (F0…FN).

Figure 3.2 Feature reduction

KDD cup 1999 dataset can be thought as an example of feature reduction. The KDD

cup consists of features (see Table 3.1) that are calculated from the network packet-

based traffic in the Lincoln laboratory dataset to a flow-based traffic. These converted

features are used for example in machine-learning based IDSes.

3.1.3 Challenges in Feature Extraction

The environment in which the feature extraction is done is a mobile operator’s network

with real people (subscribers) using it. This means that the network traffic contains user

confidential information. For example in Finland user network traffic is protected by the

data protection law [46]. Because of this, only a limited analysis for the network traffic

can be done, meaning that a deep packet analysis cannot be done. In general, only the

header fields of the packets can be checked but not the user data in the payload.

Scalability is an issue with IDSes. Because of the huge amount of data flowing

through the mobile operator’s network, it is not an easy task to find out the right

information needed for an IDS. The problem is to find an answer to the question: “What

features need to be taken into account when calculating or analysing whether the

activity is malicious or not?”

In telecommunications networks link traffic can reach up to 150 Gbps traffic rates

while current IDSes are capable of monitoring only some parts of the traffic. For

example Sourcefire’s IPS is capable to monitor network traffic speeds from 5Mbps up

to 20 Gbps [26]. In order to cover the whole bandwidth, the traffic needs to be divided

somehow and monitored by multiple IDSes. Then again the information provided by the

IDSes needs to be correlated somehow which again adds another challenges to the

whole intrusion and anomaly detection process.

Based on prior research on IDSes it is clear that either one of the techniques alone

cannot detect everything but the combination of the both is the most promising

approach. For example misuse detection can be used to filter known threats from the

traffic to make it easier for the anomaly detection system to focus on the unknown.

Even though IDSes have been researched over 20 years, we still do not have an

answer to the question of what features should be monitored. So far different kinds of

 25

methods and algorithms have been developed for anomaly detection but the focus has

been on making them more efficient. Almost all of them are lacking the same

information; what features are important for IDS, especially in telecommunications

networks? For some reason information on the used features is not easily found from

IDS research publications. No matter what the reason is the result is the same; every

researcher has to figure out by themselves which features should be used for the

monitoring.

3.2 Audit Data Sources

IDS’s operation is based on data analysis. In telecommunications networks there is a

wide variety of different sources of data that produce information, or features to be

more specific, that the IDS can analyse for intrusions and anomalies. In general there

are two main sources of audit data that IDSes are using; network data and host-based

security logs [24].

3.2.1 Network Data

Network data is collected using packet and flow capturers. Packet capturers can be

either software or hardware based products. Wireshark and Tcpdump are the most

known freely available software based packet capturers. In addition to these two, most

of the manufacturers of network elements such as routers and switches are also

providing packet and flow capturers as a product that can be attached to their

equipment. For example, Cisco provides a product called NetFlow [47] that can capture

network traffic flows. The flow capturers monitor packet data and create flow

information based on the communication between two endpoints. How flow is

understood varies based on the monitoring system. The parameter that defines when a

flow ends and a new one begins is the idle time between the communications of two

endpoints and this time changes within monitoring systems. In addition there are tools

that convert the packet data into network flow data. An example of such a tool is Argus

[48].

Argus

Argus is a combination of two elements; argus-server and a set of argus-clients. The

server is responsible of reading and converting the network traffic from packet data into

flow based data. The argus-server can be used to monitor network traffic in real time or

it can read packet data files that are stored in tcpdump- or pcap-format. [48]

Argus-clients are small programs that can read and extract additional information

from the data flow created by the Argus-server. For example, the client program,

racluster, can find the top talkers (communicates the most) and listeners (with less

activity) within the flow data. The most relevant client program is named “Read argus”

(ra). Basically it reads the Argus-based data flow and displays the flow information on

the screen or writes it into a file. [48]

 26

3.2.2 Host-based Security Logs

Logs contain records of events that have occurred within an organisation’s system or

network. Logging systems were created for the management and network failure

detection point of view. As such they were not designed to be used as a security feature.

Nevertheless, nowadays logs are also used for security purposes.

SNMP MIB can be used as an IDS data source (see Section 3.3.3). With SNMP it is

possible to query the status of a network element or the element might independently

send updates of its own status. In general the management entity requests the status of a

network element using SNMP. The network element then sends log entries that

correspond to the received request with SNMP. [49]

Another example of logs usage in anomaly detection is described by Höglund [50].

Höglund used UNIX user account logs to identify network user behaviour patterns and

to recognize when the user’s behaviour changes significantly from the normal pattern.

[50]

In telecommunication networks there are multiple architectural elements (see Figure

2.1) that produce information that could be used in intrusion and anomaly detection.

Just to name a few there are AAA-server, databases, gateways, SGSN, MME, Charging

and HLR/VLR. These elements generate security and management logs that can be used

in intrusion and anomaly detection. For example the information gathered from the

network elements could be used together with the alarm reports generated by IDS to

find the root cause for the intrusion or anomaly.

As most of the network elements generate logs there are other sources of security

logs as well. Kent et al. [51] define three categories of audit data sources that generate

security logs; security software, operating systems and applications.

Security Software

Network- or host-based security software can be classified, for example as antimalware

program, a firewall, a proxy server, an intrusion detection and prevention system and an

authentication server. Security software’s main purpose is to provide security

information that can be used by other security solutions such as IDS. [51]

Firewalls and antimalware software generate logs on events when suspicious or

malicious activity is detected. Proxy servers generate logs from network connections

and web requests associated with the connections. In addition if the proxy server has

user authentication functionality it will also log user credentials from the persons who

are accessing web resources. Proxy servers with AAA functionality are especially useful

in audit trailing. Intrusion detection and prevention systems produce logs as any other

security software. [51] These logs can be used for example in a distributed IDS

architecture (see Section 2.3.3) where the central IDS collect the logs from the IDS

sensors.

 27

Operating Systems and Applications

Computers, mobile devices, servers and networking devices such as routers and

switches are operated by an operating system. Applications are operating on the top of

the operating system and are therefore able to access some of the information that the

operating systems are generating. While performing operational actions the operating

systems and applications generate logs from system events and audit records. [51]

System events are generated usually from successfully or unsuccessfully completed

actions, status of the system and services that are running. Audit records contain

information about authentication operations such as successful or failed user

authentication. In addition audit records are generated with information on what files

the user is accessing and with which privileges. [51]

3.3 Features used in Prior Art

Features used in prior research on IDSes are roughly organized into five categories;

features based on flow data, packet data, SNMP data, features collected from UEs and

features used in ad-hoc network monitoring.

3.3.1 Flow-based Features

Lakhina et al. [52] analysed events that affected to the distribution of traffic features and

marked these as anomalies. They monitored network-wide backbone traffic using the

following IP packet header data:

 source IP address

 destination IP address

 source port number

 destination port number.

They grouped known anomalies into seven categories based on the type of the

detected attack. These were DoS, Flash Crowd, port scan, network scan, outage events

and worms to name few. The classification was done using multiway subspace method

together with the k-means clustering algorithm. The multiway subspace method is able

to isolate correlated changes on the four IP packet header features (source and

destination IP address, source and destination port number) between traffic flows. [52]

The same features are also used by Fontugne et al. [20] in their image processing-

based approach to detect anomalies. They compared their proposed anomaly detection

method against a statistical-based method proposed by Dewaele et al. [53]. The

comparison was done using a network traffic data collected from Trans-Pacific.

Fontugne et al. [20] categorised the results in similar way than Lakhina et al. [52] did

but instead of grouping the detected anomalies into seven groups, they grouped them

into 15.

 28

Gorton [54] used two detection methods to analyse a router log data; a single event

and threshold analysis. The single event analysis raises a flag of intrusive activity when

a single event is discovered. In the threshold analysis intrusive activity is flagged with

respect to accumulated activities. In his analysis he collected syslog messages from

Cisco routers and transformed the log data into a set of features that are:

 time from the syslog

 status that can be either permitted or deny

 protocol identifier

 type of service

 source IP address

 source port number

 destination IP address

 destination port number

 number of ICMP messages

 number of packets.

With single event analysis Gorton was able to detect spoofed connection attempts,

connection attempts to known Trojan horses, connection attempts to known vulnerable

ports, the Land DoS attack, TCP-broadcasting, the echo-chargen attack, ICMP and UDP

echo request. With threshold analysis Gorton was able to detect SYN flooding, network

mapping and port scans to name few. [54]

Knuuti [55] compared the usability and performance of three different IDSes in a

large IP networks. The evaluated IDSes were Snort, Bro-IDS and TRCNetAD. Snort

and Bro-IDS are capable of analysing traffic in real-time when TRCNetAD is a non-

real-time anomaly detection based IDS. [55] Features that Knuuti used are [55]:

 IP address

 time stamp

 number of ICMP packets

 number of UDP flows

 number of TCP connections

 amount of received data

 amount of sent data

 number of received packets

 number of sent packets

 number of different port numbers used over 1024

 number of port numbers used over 1024

 number of different port numbers used below 1024

 number of port numbers used below 1024

 number of receiving sequences from different IP’s

 29

 number of receiving sequences

 number of sending sequences to different IP’s

 number of sending sequences.

Knuuti conducted two, one week long, traffic capturing periods to collect data for

the IDSes. From the data collected he then generated time series that are 60 minutes

long in order to create clusters and analyse the data with self-organising maps. Snort

detected over 1.5 million intrusions during the one-week traffic capturing period. Snort

was able to detect the following attacks:

 buffer overflow attacks

 Trojan

 denial of service

 VoIP attacks

 Heap overflow attack

 DNS spoofing attack

 spyware.

Bro-IDS detected approximately eight thousand intrusions which were address and

port scan. TRCNetAD detected 150 thousand anomalies during the same time period.

Knuuti also evaluated alarm similarities between the detectors and his conclusions were

that TRCNetAD was able to detect some of the port and address scans that Bro-IDS

discovered but there were no similarities between Snort’s and TRCNetAD’s findings.

[55]

KDD CUP 1999 Studies

As mentioned in Section 2.2.8, the KDD cup is widely used in evaluating the IDSes’

performance and detection rate. The same fundamental problem exists with these

studies as described in Section 2.2.7. Most of the studies are only describing the

achieved results of the IDS not how they managed to reach them. What creates even

more confusion is that in some of the studies the researchers are implying that they are

using all or just a specific amount of features from the 41 features in KDD cup.

Comparison of these studies is therefore impossible based on the data available.

However, because of KDD cup dataset’s popularity, there are also studies available on

the Internet which do provide detailed information about the features and the methods

that they used. Such studies are presented in the field literature [39; 40; 41; 42; 56].

These studies evaluate optimal feature subsets of each of the five categories (see

Section 2.2.8) in the Lincoln laboratory 1998 dataset. The features extracted for the

KDD cup 1999 dataset are listed in Table 3.1. The features in Table 3.1 were converted

into data flows from the packet data in 1998 Lincoln laboratory dataset using a Bro-IDS

 30

[57, p. 146]. The Bro-IDS [58] is very much similar to Argus discussed in Section 3.2.1

with the difference that Bro is also an IDS.

Table 3.1 Features in KDD cup 1999 dataset [34]

Label Feature Label Feature Label Feature

A duration O su_attempted AC same_srv_rate

B protocol_type P num_root AD diff_srv_rate

C service Q num_file_creations AE srv_diff_host_rate

D flag R num_shells AF dst_host_count

E src_bytes S num_access_files AG dst_host_srv_count

F dst_bytes T num_outbound_cmds AH dst_host_same_srv_rate

G land U is_hot_login AI dst_host_diff_srv_rate

H wrong_fragment V is_guest_login AJ dst_host_same_src_port_rate

I urgent W count AK dst_host_srv_diff_host_rate

J hot X srv_count AL dst_host_serror_rate

K num_failed_logins Y serror_rate AM dst_host_srv_serror_rate

L logged_in Z srv_serror_rate AN dst_host_rerror_rate

M num_compromised AA rerror_rate AO dst_host_srv_rerror_rate

N root_shell AB srv_rerror_rate

Zainal et al. [39] evaluated in their study the detection rate of IDSes by using five

optimal feature subsets extracted from the 41 features in the KDD cup dataset (see

Table 3.1). For the extraction they used five different methods to calculate and select six

most important features for each subset.

They extracted two of the optimal feature subsets by using particle swarm

optimisation (PSO) and rough set theory (RST). The remaining three subsets were

chosen according to the study by Sung et al. [56] in which they used support vector

decision function ranking (SVDF), linear genetic programming (LGP) and multivariate

regression splines (MARS) to select optimal feature subsets. [39, see 56] The extracted

features are summarised in Table 3.2 (SVDF, MARS, LGP, Rough set and Rough-

PSO).

 PSO is a population-based search algorithm that organises particle swarms into an

optimal regions based on the historical behaviour of each particle and its neighbours.

RST is a feature selection tool to find data dependencies and to reduce the number of

features in a dataset. [39] SVDF, LGP and MARS are used in a similar fashion to select

optimal feature subsets to reduce the number of features in a dataset. [56]

Mukkamala et al. [40] used two feature ranking and selection methods to choose

feature subsets for each attack type groups described in APPENDIX 2 Appendix 2.

These feature selection methods were performance-based ranking method (PBRM) and

support vector decision function ranking method (SVDFRM). The selected features are

summarised in Table 3.2 (SVM, SVM (PBMR) and SVM (SVDFMR)).

In PBRM in every loop one feature is dropped from the feature set and the

remaining feature set is used to train the IDS. Then this IDS’s performance is evaluated

and if the performance is improved the dropped feature is marked as non-important

feature. In case the performance is lowered the dropped feature is marked as an

 31

important feature and is taken back to the feature set. This iteration is continued until all

the features in the feature set are tested and evaluated. [40]

In SVDFRM the contribution of each feature to the classification is ranked by the

weight of contribution to the anomaly. If one feature affects significantly to the

classification it is then given a higher weight value than to the feature whose influence

to the classification is minor. The weight of each feature can be extracted from the

support vector decision function. [40]

Chebrolu et al. [41] evaluated the performance of two feature selection algorithms

Bayesian networks (BN) and classification and regression trees (CART) (Section 3.1.1)

and their ensemble. The selected features are summarised in Table 3.2 (BN, CART and

BN+CART). Their conclusions were that the detection rate changes significantly

between the feature selection methods and therefore an IDS should be modularly

designed. In general the modularity means that each module would use different feature

subsets to detect a specific group of the attack categories.

According to studies presented in the literature of the field [39; 40; 41; 42; 56], it

can be said that the detection rate for different attack types is higher by using different

feature sets for each attack type category instead of using the same features for all the

attack types. In addition it can be said that by using less features it is possible to reach

higher detection rate than by using all of the available 41 features in KDD cup dataset.

More detailed results are presented in Appendix 3.

Table 3.2 Features used in KDD CUP 99 studies

Method
No.

features Features

SVDF 6 B,D,E,W,X,AG

MARS 6 E,X,AA,AG,AH,AI

LGP 6 C,E,L,AA,AE,AI

Rough set 6 D,E,W,X,AI,AJ

Rough-
PSO 6 B,D,X,AA,AH,AI

SVM 41 ALL

SVM
(PBMR) 31

A,C,E,F,H,I,J,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,
AA,AB,AC,AF,AG,AI,AJ,AL,AM,AN,AO

SVM
(SVDFMR) 23

A,B,C,D,E,F,J,L,Q,W,X,Y,Z,AA,AB,AC,AE,
AG,AH,AJ,AL,AM

BN 41 ALL

BN 17 A,B,C,E,G,H,K,L,N,Q,V,W,X,Y,Z,AD,AF

BN 12 C,E,F,L,W,X,Y,AB,AE,AF,AG,AI

CART 41 ALL

CART 17 A,B,C,E,G,H,K,L,N,Q,V,W,X,Y,Z,AD,AF

CART 12 C,E,F,L,W,X,Y,AB,AE,AF,AG,AI

BN+CART 41 ALL

BN+CART 17 A,B,C,E,G,H,K,L,N,Q,V,W,X,Y,Z,AD,AF

BN+CART 12 C,E,F,L,W,X,Y,AB,AE,AF,AG,AI

 32

3.3.2 Packet-based Features

Kabiri et al. [59] have conducted research on identifying effective features for intrusion

detection. They have done related research for detecting probing attacks [60] and for

detecting smurf attacks [61]. Results from these researches are used in [59] as well.

Kabiri et al. [59] used Lincoln laboratory dataset 1998 to select optimal features

from the IP and TCP packet header fields. Appendix 1 lists all the 32 basic features that

they extracted from network traffic header fields. They used principal component

analysis (PCA) method to select optimal feature subsets from the 32 features for each of

the five categories (see Section 2.2.8) in the Lincoln laboratory dataset. The suggested

feature subsets are listed in Table 3.3.

In their work Kabiri et al. [59] investigated the information value for each category

and their conclusion for future work stated that these features should be experimented in

an intrusion detection system. In addition a comparison of accuracy and efficiency

should be done using the feature subsets and by using all the 32 features.

Table 3.3 Features Kabiri et al. used [59]; [60]

No. Feature DoS U2R R2L Probing Normal

1 Protocol x x

5 Coloring_rule_name x x x

10 IP_Total_Lenght x

12 MF_Flag_IP x x

13 DF_Flag_IP x x

16 Protocol_no x

19 Stream_index x

24 Urgent_flag x x

25 Ack_flag x x

26 Psh_flag x

27 Rst_flag x x x

28 Syn_flag x x x

29 Fin_flag x

Carrascal et al. [62] used self-organising maps together with learning vector

quantization in their machine-learning based method to detect intrusions. They

evaluated their anomaly detection efficiency by using Lincoln laboratory data sets as a

testing data. Their system’s detection rate was 72% and false positive rate 2%. In

comparison they provided a list of other AD methods whose detection rate was better

than their method’s but with a higher false positive rate. Features that Carrascal et al.

used were [62]:

 codification of TCP flags

 IP protocol number

 IP type of service

 33

 TCP window

 packet size

 codification of <source port / source IP address, destination port / destination IP

address>

 destination port

 source port

 source IP

 destination IP

 codification of TCP options.

Most of the features are self-explanatory but the coded features are not as clear.

Carrascal et al. [62] combined features that have multiple parameters such as TCP flags

and TCP options into single features. The authors do not explain in details how the

codification is done so one can only guess what the exact features are in reality.

3.3.3 SNMP-based Features

Lee et al. [63] used Simple Network Management Protocols Management Information

Base (SNMP MIB) [49] to detect intrusion. SNMP is a protocol used in TCP/IP-

network management and the idea to use it as a security monitoring tool is intriguing.

SNMP logs are generated in network devices in any case and by using the already

available logs do not add new requirements to the network infrastructure. By using

SNMP MIB, some of the challenges in network intrusion detection can be avoided.

There are no privacy concerns as user confidential information is not needed for the

analysis. Also the data rates are low compared to network traffic amounts. SNMP MIB

does not require any new hardware as the SNMP is widely supported. [63]

In their work Lee et al. [63] used 12 features from SNMP MIB in intrusion

detection. Traffic on interfaces is estimated by analysing the correlation between IP

group objects and interface group objects of SNMP MIB. Features from SNMP MIB

that Lee et al. used are described in Table 3.4. In conclusions they proposed that only IP

group features could be used to enhance the analysis performance. [63]

Table 3.4 SNMP MIB features [63]

Feature Description

ipInReceives

Total number of input datagrams received from interfaces, including those

received by error [64]

ipOutRequest

Total number of IPv4 datagrams which local IPv4 user protocols (including

ICMP) supplied to IPv4 in requests for transmission [64]

ipForwDatagrams

Number of input datagrams for which this entity was not their final IPv4

destination, as a result of which an attempt was made to find a route to

forward them to that final destination [64]

 34

ipOutDiscards

Number of output IPv4 datagrams for which no problem was encountered

to prevent their transmission to their destination, but which were discarded

[64]

ipOutNoRoutes

Number of IPv4 datagrams discarded because no route could be found to

transmit them to their destination [64]

ipFragOKs

Number of IPv4 datagrams that have been successfully fragmented at this

entity [64]

ipFragFails

Number of IPv4 datagrams that have been discarded because they

needed to be fragmented at this entity but could not be, e.g., because their

Do not Fragment flag was set [64]

ipFragCreates

Number of IPv4 datagram fragments that have been generated as a result

of fragmentation at this entity [64]

ifInUcastPkts

Number of packets, delivered by this sub-layer to a higher (sub-) layer,

which were not addressed to a multicast or broadcast address at this sub-

layer [64]

ifInNUcastPkts

Number of packets, delivered by this sub-layer to a higher (sub-) layer,

which were addressed to a multicast or broadcast address at this sub-

layer [64]

ifOutUcastPkts

Total number of packets that higher-level protocols requested be

transmitted, and which were not addressed to a multicast or broadcast

address at this sub-layer, including those that were discarded or not sent

[64]

ifOutNUcastPkts

Total number of packets that higher-level protocols requested be

transmitted, and which were addressed to a multicast or broadcast

address at this sub-layer, including those that were discarded or not sent

[64]

3.3.4 Features used in User Equipment monitoring

A combination of host based intrusion detection (HIDS) and remote IDS server is a

system proposed by Miettinen et al. [37] and later used by Schmidt et al. [65] where

user equipment (UE) has a host-based IDS monitoring the UE’s behaviour and

forwarding these monitored features to a remote IDS server. Remote server analyses the

features for anomalies such as worms and other malware. [37] Features that Schmidt et

al. monitored are [65]:

 amount of available RAM

 number of created TCP/IP connections

 user idle time in seconds

 CPU usage in percent

 battery charge level

 Boolean user idle indicator that is true if the user is idle and false if not

 amount of available hard disk space

 35

 amount of running threads

 mobile phone network cell ID

 number of installed applications

 amount of opened Bluetooth connections

 amount of sent SMS messages

 amount of sent MMS messages

 number of received MMS messages.

Transfer of monitored features is proposed to bypass the processing and memory

limitations of UEs. UEs are capable of monitoring its own system behaviours but they

are lacking processing capacity for the intrusion detection analysis. Remote IDS server

is capable of analysing inputs from multiple UEs. [37]

3.3.5 Features used in Ad-Hoc Network monitoring

Huang et al. [66] describe a method for detecting routing anomalies in Ad-Hoc

networks. They created a list of attribute sets for two different groups; non-traffic

related and traffic related. [66]

Non-traffic related attributes are [66]:

 time stamp

 node movement velocity (scalar)

 route add count for routes newly added via route discovery

 route removal count for stale routes being removed

 route find count for routes in cache with no need to re-discovery

 route notice count for routes added via overhearing

 route repair count for broken routes currently under repair

 total route change rate within the period

 average length of active routes.

Traffic related attributes are [66]:

 packet type data, route (all), ROUTE REQUEST, ROUTE REPLY, ROUTE

ERROR and HELLO messages

 flow direction received, sent, forwarded and dropped

 sampling periods 5, 60 and 900 seconds

 statistics, measures, count and standard deviation of inter-packet intervals.

The traffic related list of attributes creates a list of 132 different features. Formula

that is used to calculate the amount of different features is (6 x4 - 2) x3 x2. The same

features are used by Huang et al. [67].

 36

Wang et al. [68] used similar attributes as Huang et al. [66] but with a slight

difference. They divided packet type data into two separate types; data size and data

number. In addition, they dropped the statistics, measures, count and standard deviation

of inter-packet intervals from the monitored attributes in order to decrease the total

amount of features which would be 150 in total. Without those attributes the total

amount of monitored features is 75. In their calculations Wang et al. have further

decreased the total amount of features from 75 to 25. [68]

 37

4 FEATURE SELECTION

The environment where the IDS is located affects significantly to the features that can

be used by IDS. In Section 3.3 a set of different feature lists were described. It is clear

that different sources of data produce different kind of features. For example, if the

network traffic capturer is a flow-based capturer it provides completely different

information than a packet capturer does. In addition to network traffic, there are other

sources of data (see Section 3.2) from which a subset of features is selected or extracted

using feature analysis methods described in Section 3.1.

Three approaches are used in this thesis to select the relevant features from the

network traffic. These are; analyse the feature list described in Section 3.3, analyse

different attack methods and how they affect to the network traffic and evaluate what

other information the field literature holds on this topic.

4.1 Feature Analysis

As mentioned in Section 3.1, there are two different trends on how to extract the

features. They can be chosen by using an algorithm that calculates correlated features

and reduces the redundancy in the dataset (feature reduction) or new features can be

extracted from the already available ones (feature selection).

In this thesis the feature selection is done by analysing the attacks within the Lincoln

laboratory 1999 dataset (see Section 2.2.8) and how each attack are affecting to the

network traffic. Through the scenarios a subset of features that are the most relevant to

the corresponding attack category are then chosen.

The method used to monitor network traffic is to use flow-based data. There are

many advantages in using flow data instead of packet data. The major advantage comes

from the reduced need of storage space for the data. Network flows requires a one tenth

of the original packet-based data which is a huge difference. Another advantage is that

the flow data does not contain payload data at all. So the user privacy is no longer a

problem. Also the traffic volumes such as the number of packets and bytes between

destinations are easily extractable from the flow data so extra calculation is not

therefore needed. The disadvantage with this data is of course the loss of individual

packet information such as the size of the packet, structure of the packets in order to

detect malformed ones etc. However these can be monitored by other methods such as

misuse detection based IDSes.

 38

4.1.1 Attack Scenarios

By analysing known attacks and their influence to the normal network traffic it is

possible to define which features are affected and therefore should be monitored. The

idea behind this approach is to define the characteristics of a specific attack group. This

is done by analysing the attacks in Lincoln laboratory 1999 dataset (see Section 2.2.8).

The attack categories in the dataset are:

 denial of service

 probing

 user to root

 remote to user

 data

Denial of Service

DoS attacks affect to the usability and reach ability of network services such as web,

mail, voice and data. These attacks also affect to the reputation of a CSP. In most cases

the attack itself is not detectable before the service or element in the network is

overwhelmed by the amount of data it receives. Despite this fact there are some patterns

that might be detectable.

According to Depren et al. [69] some of the DoS attacks are detectable by

monitoring from the traffic flows the amount of data received by the destination in

comparison to the amount of data sent by the source. In normal case the amount of sent

data is around 40-50 bytes and as well the amount of received data is around 40-50

bytes. In a Dos case, the amount of bytes sent remains on the same level of 40-50 bytes

but the amount of bytes received is zero.

The Lincoln laboratory dataset contains multiple DoS attacks that use different

methods and techniques to crash the targeted host or service. In the following

paragraphs some of the attacks and their influence to the network traffic are discussed.

In addition to these attacks there are few others in the Lincoln data but their influence to

the network traffic is either similar to the ones discussed below or the detection requires

DPI which is not possible to do because of the user privacy constraints.

Using HTTP it is possible to cause a DoS state. This can be achieved by inserting

multiple (more than 20) headers into a single HTTP-request message. In Lincoln

laboratory dataset the attack Apache2 sends a HTTP-request that contains 10000

headers in a single message. [32]

The attacker sends a TCP SYN-message that has the same address as the source and

destination. The land attack requires only a single packet sent to the destination. This

attack is not anymore feasible as the new systems can cope with these messages. But in

case of a mistake in the system code or reuse of an old one, this might still be feasible

even today. This is why these packets should be monitored within the network traffic.

[70]

 39

ICMP-messages with a larger payload than 64kB might cause unpredictable

reactions in the targeted systems. This attack, also known as ping of death, was

applicable to older operating systems that could not cope with abnormal ICMP-

messages. A malformed ICMP-message caused freeze, reboot or crash on the

destination system. Modern operation systems are not affected anymore by this attack

but it is still possible that some behave abnormally when oversized ICMP-message is

received. Therefore these messages should be monitored. [71] In addition other

protocols should be monitored as the same method used with ICMP can be used with

other protocols as well. Targa3 is an example of tool that generates malformed IP

packets [72].

In smurf attack the targeted host is flooded with multiple ICMP response messages

from multiple sources. The attack requires three entities, the attacker, middleman and

the destination. The attacker sends ICMP echo request packets to the middleman with

the target host as the source address. The middleman then sends response messages to

the targeted host. In order for this attack to cause a DoS scenario to the target, the

attacker needs to send multiple messages to multiple middlemen. These middlemen

would then send a large number of response messages to the target that it would not be

able to cope with the number of received messages. This kind of distributed attack is

also known as distributed DoS. Smurf attack can be detected when a large number of

ICMP echo replies are sent to a single destination. [73]

SYN-flooding together with IP spoofing attack is an example of DoS. In SYN-

flooding the attacker sends multiple SYN-messages to the targeted server with a

spoofed IP source address. The server tries to respond to these SYN-messages with a

SYN-ACK-message and waits for ACK-message from the source. Because the source

address is spoofed, the server will never get an answer to the SYN-ACK-message. The

server creates a transmission control block (TCB) state that is reserved for each

connection and is released after the connection is closed (received an ACK-message). If

the attacker keeps on sending SYN-messages, the TCB-table begins to fill and after a

while the table is full of these half-open connections and any further coming

connections are rejected. TCB is emptied within a certain period of time but this does

not help if the attacker keeps on sending SYN-messages with a spoofed IP address. [74]

Detecting a SYN-flooding attack might be difficult as the messages itself look

legitimate. Still there are some clues that might give a hint of the ongoing SYN-flooding

attack. One way, of course, is to notice that the targeted host is not reachable. This is, of

course, the outcome of the attack and is not therefore the best way to find out that

something malicious has happened. Another way to find out that a possible SYN-

flooding attack is ongoing is to check host’s state tables. If there are too many

connections in SYN_RECEIVED state it might be because of a SYN-flooding attack.

[74]

Flash crowd is an attack that does not belong to the attacks within the Lincoln

laboratory data but is a very common root cause for a DoS state in a service. Therefore

it is discussed also in this context. Flash crowd is an attack that is based on massive

 40

amount of people requesting a connection or service from a single destination. The

amount of requests becomes too large for the destination to handle which will

eventually lead into a DoS state. Flash crowd can develop intentionally or

unintentionally. Intentionally caused flash crowd attack is done by leading people or

computers to try to connect to a single service at the same time. Example of an

unintentionally created flash crowd happens often when the national lottery with a huge

winning prize is drawn and people are trying to see the results from the web pages.

Flash crowd attacks can be detected from the network traffic amounts and especially

from the amount of service request within a short period of time [75].

In general most of the DoS attacks require multiple packets sent to the targeted host

which will cause a memory and processing overloads, reboots etc. abnormality that

prevents users accessing the service. There are though examples of single packets

causing a crash on the destination such as in case of ping of death attacks. The features

that should be monitored for DoS attacks are:

 Amount of received and sent bytes

 Number of connection from multiple sources to a single destination

 Number of packets to a single destination

 Number of flows to a single destination

 ICMP packet size (not detectable in flow data)

 Malformed packets such as HTTP messages with multiple header fields (not

detectable in flow data)

Probing

Network mapping and probing are examples of reconnaissance attacks where the

attacker tries to map out IP addresses and operating systems that are in use. In addition,

the attacker tries to find out what services the computers are providing. Network

mapping means an action where the attacker tries to map out the infrastructure of the

network. To do this, the attacker is therefore targeting all the computers within the

network. However, probing is an attack that tries to find out information from a single

computer.

By conducting network mapping and probing attacks the attacker tries to find out all

the possible means and methods that it can use to perform other attacks such as denial of

service or gaining an unauthorised access to the inner network. Although

reconnaissance attacks are not as serious threat as DoS attacks are, t they are still worth

monitoring, because they are an omen for more harmful activity.

To send a single ICMP Echo Request message is the most common way to find out

if there is a computer having this IP-address. This kind of network mapping attack is

easily detected by firewalls and therefore does not pose a significant threat to the

network.

A more sophisticated method is to reconnaissance through a port that uses TCP-

protocol and communications through this port is allowed to pass firewalls. By sending

messages through this port it is possible to map every computer inside the network. For

 41

example, if Telnet connections are allowed through port number 23, the attacker could

send TCP SYN-messages to the computers through this port. This kind of an attack is

easily detectable if the attacker sends multiple messages within a short period of time. If

the attacker distributes the reconnaissance messages and randomises the time between

the packets, it is then more difficult to find out that these individual messages are part of

a reconnaissance attack. Especially if the attacker is only interested in finding a small

group of computers inside the network instead of trying to find every possible computer,

it would be even more difficult to detect the attack. [76]

By using a different TCP flag option (ACK) the attacker could make it look like he

is responding to connection requests that would look like a legal action. In this case the

attacker would send TCP messages with ACK flag through the same port (23) likewise

previously to the computers within the network. To make the attack even more

sophisticated the attacker could use a specific source port number such as 80 to mimic a

web server response messages. [76] In order to detect these reconnaissance attacks the

IDS or firewall would have to be keep track of the connection states. In a traffic flow

between two entities this means that if there are a lot of ACK-flagged TCP messages

coming in without any SYN-flagged TCP messages ever send, the states are incorrect

and the messages are part of reconnaissance attack. The attacker could also use RESET

flags to achieve the same goal as was with ACK and SYN flags. RESET messages pose

a greater threat than the others as they are not always monitored by firewalls and other

monitoring systems. In case the firewalls or IDSes are stateless they might allow these

messages go through to the inner network.

By scanning all or just a specific group of ports from the targeted computer, the

attacker tries to find out if there is an open port or service that it can exploit. In addition

to finding out what ports are in use or open, the attacker tries to find out what versions

of the services are used. This information is valuable for the attacker because it can then

find out what are the known vulnerabilities with the specific version of the service. [77]

Port scanning itself can be detected easily if the scanning is a constant activity,

meaning that the attacker frequently sends packets to multiple ports on a single host. If

the attacker distributes the port scanning attack it is then more difficult to detect. For

example, the attacker might send a single packet to the destination and wait for a long

period of time before sending another packet. IDSes without the knowledge of the past

are in trouble detecting this kind of single packet attacks. Another version of distributed

port scan attack is to use multiple sources to perform the scan and then combine the

results afterwards. Again if the attack is conducted within a short period of time it is

more detectable than when the time between packets is longer. [77] Other means to do a

reconnaissance are social engineering, phishing and passive eavesdropping of network

traffic. However, these attacks are not detectable by monitoring the network traffic.

Network mapping and probing attacks are based on methods that either use single

packets or multiple packets. With a stateful firewall or IDS it is possible to easily detect

most of the attacks belonging to this group. The features that should be monitored for

probing attacks are:

 42

 State of the connections

 Number of ports accessed by a single source

 Number of ICMP packets from a single source

 TCP flag combinations

Attacks against Mail or Web Servers

This group of attacks is a combination of DoS and probing attacks which are targeting

services in the monitored network. Attacks in this category are web and mail bombs.

Both of the attacks are relying on the same technique to cause a crash or attenuation of

service in the targeted host. In both cases the attacker sends multiple messages (mail or

web request) to the target service. Once the amount of received messages becomes too

large to handle the targeted service’s quality of service will suffer and in worst case the

service crashes. [32]

Password guessing can be categorised in this category as the attacker tries to gain an

unauthorised access to the CSP’s services. Like in network mapping, the attacker could

try to guess the password and gain an access to the service by brute force that would

require multiple service requests within a short period of time. The attacker might as

well distribute the password guessing by sending single requests once in a while with

randomised time difference. Distributed attacks are more difficult to detect than brute

force attacks. With a host based IDS the targeted system can keep track on the number

of wrongly guessed passwords from certain IP addresses. So even when the attacker has

distributed the service requests the HIDS is able to detect them. From the network

traffic the same can be detected by monitoring the service request amounts to a single

destination. [75]

With mail services it is difficult to set up a specific threshold which would

distinguish a legitimate amount of messages from abnormal amount. This requires

monitoring of message amounts in order to find out what is a normal message amount.

The features that should be monitored for attacks against the services are:

 Number of service request

 Number of packets to a single service

 Number of flows to a single service

User to Root

U2R attacks are detectable with misuse based IDS from the network traffic packets.

Attacks belonging to this category have a distinguishable pattern or a string in the

payload that can be looked for. [32] An anomaly detection based IDS that does not

monitor packet payload therefore cannot detect attacks belonging to this category. Of

course some attacks might be detectable but as most of them are affecting only to the

payload, detection of these attacks with anomaly detection based IDS is therefore not

expected.

 43

Remote to User

Similarly to U2R attacks, the R2U attacks are detectable only from the payload data by

looking for specific patterns. Some of the attacks are though also detectable from the

network traffic by looking for malformed packets that are oversized, fragmented or

using, for example, abnormal TCP flag options. [32]

Data

This group contains an attack known as “secret” in which the attacker tries to transfer

data from a legal place to a place where it does not belong. In order to detect these

actions the system needs to know which files are secret. This requires a host-based IDS

which would monitor actions regarding the use of these files. [32]

4.1.2 Prior Art

Maselli et al. [78] have defined global features that can be used to profitably detect

network anomalies, regardless of the network infrastructure or users. They have

explored different approaches to the problem of choosing the most relevant features to

monitor. Their investigation combined static and dynamic traffic knowledge. Static

traffic knowledge contained analysis of network security violations, IP protocol

dissection, and network traffic monitoring metrics. In addition they surveyed what

features network system administrators monitor. Dynamic traffic knowledge contained

analysis of how the system administrators define counters and corresponding thresholds

for each protocol in order to model normal network traffic and to distinguish anomalous

traffic from it. A summary of their conclusions is presented with the following lists:

Monitor traffic volumes according to TCP/IP protocols:

 Number of source packets per protocol.

 Number of destination packets per protocol.

 Number of source bytes per protocol.

 Number of destination byte per protocol.

Monitor TCP session history that contains knowledge of:

 source IP address

 source port number

 destination IP address

 destination port number

 duration of the connection

 TCP window size

 TTL statistics

 amount of re-transmitted data

 fragmented packets percentage.

 44

Monitor traffic distribution:

 Amount of local traffic vs. amount of remote traffic.

 Amount of traffic per each connection/flow per application.

 Amount of used bandwidth.

Monitor packet distribution:

 Number of packets by packet size.

 Amount of IP vs. non-IP traffic.

 Unicast vs. multicast vs. broadcast.

Although the features described by Maselli et al. [78] are on a high level, they still give

ground to the conclusions that are made based on the attack analysis and comparison of

used features in prior art.

4.2 Feature Subsets

Based on the available information from different sources like Knuuti’s thesis [55] and

Gorton’s research of alert correlation [54], research on detecting intrusions in network

traffic share common features that are called IP packet quintuple flow identifiers;

destination address, source address, destination port, source port and protocol identifier.

Also based on the different sources like [55] and [54] it seems that an efficient IDS

can be done just by using the IP packet quintuple as a basis. With the IP packet

quintuple it is possible to detect most of the known anomalies or at least group them

into seven commonly known groups like Lakhina et al. did in [52].

It is possible to make IDS even more precise in detecting intrusions when the basis

of features is broadened with environment or monitoring specific features. For example,

a combination of statistics from the network elements (their status, CPU consumption)

together with user statistics (their amount, activity, etc.) and network traffic flows could

improve accuracy by less false positives and negatives.

After analysing the features from the attack scenarios of view it seemed that the

features used by Knuuti [55] are very similar to the features that should be monitored

for each attack category. Therefore the features used by Knuuti (see Section 3.3.1) were

chosen as the basis from which the subsets of features would be selected. The features

to be monitored are listed in Table 4.1.

Table 4.1 Selected feature subsets

Feature All Knuuti Probe DoS Mail server

IP address x x x x x

timestamp x x x x x

number of receiving sequences x x

number of receiving sequences from x x

 45

different IP’s

number of sending sequences x x x

number of sending sequences to

different IP’s

x x

amount of data received x x x

amount of data sent x x x

amount of packets received x x x x

amount of packets sent x x x x

number of different port numbers used

over 1024

x x x

number of port numbers used over 1024 x x x

number of different port numbers used

below or at 1024

x x x

number of port numbers used below or

at 1024

x x x

number of UDP flows x x x x x

number of TCP connections x x x x x

number of ICMP packets x x x x x

number of SMTP connections x x

number of FTP connections x x

number of HTTP connections x x

number of DNS connections x x

number of Telnet connections x x

number of SSH connections x x

The features described in Table 4.1 are a statistical representation of the network traffic

activity with a given time window. This format is also known as time series. From the

anomaly detection point of view the time series are useful as they are lighter from the

processing requirements point of view and they require less space in the hard drives

when comparing them against the packet data.

 46

5 EVALUATION OF THE FEATURE SUBSETS

The feature subsets are evaluated independently in two phases by first creating a model

of a normal network traffic using training data. In the second phase the created model of

normal network traffic is analysed against testing data. Then all the anomalous

indications are analysed to find out how well the feature subsets performed.

5.1 Anomaly Detection and Feature Subset evaluation

The process from feature selection to analysis of detected anomalies is illustrated in

Figure 5.1. The process consists of three main themes which are the feature subset

decision making (upper group in Figure 5.1), data processing (left group in Figure 5.1)

and analysis of anomaly detection (right group in Figure 5.1). The criteria to choose the

feature subsets were discussed in Chapter 4. In the following sections the data

processing and anomaly analysis is discussed in detail.

Figure 5.1 The feature subset evaluation process

5.1.1 Training and testing Data

The Lincoln laboratory 1999 dataset was chosen for the evaluation of selected feature

subsets. The 1999 data in comparison to 1998 data contains attack free traffic which is

crucial for creating a model of normal traffic and training the analyser with this model.

In addition, the 1999 data contains some newer attack methods that are also targeting

 47

the network services such as mail servers. Some of the attack methods used in the 1999

data are still used today so therefore it is a better option to evaluate the selected features.

The Lincoln dataset 1999 contains five weeks of network traffic data collected from

the network [32]. The first three weeks in the dataset are training data and the last two

are testing data. However, the second week of training data is not attack free and thus it

is not used in the training phase. Using data that contains attacks could affect the model

training in such way that the IDS recognise the attacks as normal traffic. In the testing

phase the performance of each feature subset is evaluated against the first week (week

four) of testing data. The second week of testing data (week five) contained issues such

as restoring a computer from a back-up that also confused the time stamps in the testing

data [32]. Week five was therefore excluded from the testing phase.

Three computers running different operating systems (Solaris, NT and Linux) were

chosen from the dataset to get a wider scope in the feature subset analysis but also to

reduce the amount of information that needs to be analysed in the anomaly detection

phase. In addition, the number of different attacks from the attack categories was also

kept in mind when choosing the computers. The selected computers and attacks against

them are listed in the Table 5.1.

Table 5.1 Selected computers from Lincoln laboratory dataset and the number of

attacks in each attack group. The numbers of attacks longer than 60

second in duration are presented within the brackets.

Name IP address
Operation

system
Total No.
of attacks

No. of
probe

attacks

No. of
DoS

attacks

No. of attacks
against the
mail server

Pascal 172.16.112.50 Solaris 49 (14) 1 (0) 17 (1) 1 (1)

Hume 172.16.112.100 NT 39 (15) 9 (1) 4 (3) 0 (0)

Marx 172.16.114.50 Linux 23 (12) 3 (0) 6 (5) 4 (2)

5.1.2 Anomaly Detection Tool

Evaluating the efficiency of the features is done using an anomaly detection test bench

for mobile network management (ADAI) by Kumpulainen and Hätönen [79]. The tool

takes time series data as an input together with a configuration file that defines the

format and variable names used in the time series. The time series are separated into two

files; into day overviews and detailed files. The day files are a summary of the total

number of occurrences in each day. The detailed files are time series information that

represents the flow information within a specified time window.

Once the data is read, it is possible to choose a specific timeframe of interest from

the preview window shown on the right in Figure 5.2. For example, it can be used to

separate the training period from the testing period. More detailed description of the tool

and its features are given in [79].

 48

The anomaly detection is done in two phases. First the testing data needs to be

chosen in order to create the model of the normal network traffic. This model is then

used as a point of comparison in the second phase when the testing data is analysed.

Figure 5.2 ADAI GUI

ADAI supports different anomaly detection algorithms from which a local anomaly

detection method was chosen for the feature evaluation. [79]

5.1.3 Anomaly Detection Method

Local anomaly detection method is an improvement of a global AD method [50]. The

method combines K-means clustering with Kohonen’s [80] self-organising maps (SOM)

to detect anomalies.

K-means clustering is an algorithm that classifies data set to a certain K number of

clusters. Each cluster has a centroid and the data is classified by the distance from a

centroid. Each data point is classified to the cluster with the closest centroid [81]. Self-

organising map is a neural network tool for mapping high-dimensional data into one- or

two- dimensional map that can be visualised [80].

Kumpulainen and Hätönen [82] improved the anomaly detection method by using

local thresholds instead of global thresholds. As a result of this improvement the

amount of false positives were reduced. The idea and comparison of global and local

thresholds is illustrated in Figure 5.3.

 49

Figure 5.3 Anomaly detection using global and local thresholds [83].

In general the local anomaly detection method creates a map of the data, groups the

neurons and calculates the local variances within the neuron groups. All the data points

that are far from the neuron groups are marked as anomalies. In Figure 5.3 these data

points are marked by stars. [83]

ADAI with the local anomaly detection method calculates anomalous events from

the time series and gives a list of them as an output. The tool supports exporting of

anomalies into a file for further evaluation. In addition, the tool can plot time series

figure together with the detected anomalies. The tool can also plot figures that show the

distribution of anomalies according to the day of the week, time of the day; how the

anomalies are grouped and how scattered the data is within the groups. These figures

give additional information when analysing the anomalies. [79] However, only the

anomaly exporting functionality is used in this thesis to analyse the features.

The output is a list of all the events that are detected as anomalous. All the events

contain the timestamp, level of anomaly which gives estimation on the seriousness of

the detected anomaly and in addition the events contain top three features that are

contributing most to the anomaly. [79] These anomaly lists are analysed against the

information on the attacks (starting time and duration) given by Lincoln laboratory [32].

The used version of the tool (0.81) uses a size of SOM that is hard coded in to the

program. This has some disadvantages when creating a model of the normal network

traffic of two weeks. Originally the tool was designed to be used with a specific amount

of data which was far less than the amount of training data. As a result the processing

requirements became too high to handle when using a time window size of 5 seconds.

Therefore a 60 second time window size was used instead to overcome this limitation.

5.2 Preparing the Data

As the anomaly detection tool requires time series data as an input the packet data needs

to be converted. First the packet data is converted into flow-based traffic data from

which the time series can be extracted. The data conversion process is described in the

following sections.

 50

5.2.1 Pre-processing the Data

Each week in the Lincoln dataset is divided into five day files which are from Monday

to Friday. Each day is a tcpdump capture and therefore they are in tcpdump format.

These capture files contain non-IP-based traffic such as link layer messages and others

that do not have an IP address. In the evaluation of feature subsets the focus is on IP-

based traffic and therefore all non-IP based traffic needs to be filtered out before further

processing the data. The filtering is done by using tcpdump’s own filtering options. In

general the capture files are read using tcpdump with the following command:

tcpdump -r file.tcpdump ip -w ip_only.tcpdump

5.2.2 Packet Data into Flow Data

After the filtering the capture files contain only IP-based traffic and it can be further

processed into flow data. This is done using Argus-server. Argus takes the capture files

as an input and converts the packet data into bi-directional flow data. This is done using

the following command:

argus -r ip_only.tcpdump -w flow.argus

The output file of the Argus-server is in argus-format that contains all the flow

information collected from the packet data. In order to process the argus-based data it

needs to be read using Argus-client, Ra (read Argus), that comes with the Argus

installation. The Ra-function works in similar way as did the Argus-server. It takes as an

input the argus-based data and either prints the output on the screen or into a specified

file.

The features required in the anomaly detection affects the flow features that need to

be read from the flow data. The general idea is to choose flow features that contain

valuable information on the network traffic behaviour. These flow features are used to

create a model of the normal network traffic and therefore they should represent the

network traffic as well as possible. In this case the output is saved into a comma

separated value (CSV) file using the following command:

ra -u -nr flow.argus -c ";" -s stime proto saddr sport spkts sbytes daddr dport dpkts dbytes > ./file.csv;

The output of the Ra in this case is in csv-format that contains the following features:

 starting time of the flow in unix time format

 protocol (TCP, UDP or ICMP)

 source IP-address

 source port number

 number of packets sent by the source

 51

 amount of bytes sent by the source

 destination IP-address

 destination port number

 number of packets received by the destination

All of the above mentioned operations need to be done for every capture file. In the end

there are five csv-formatted day files for each week that contain the flow information.

To make things easier the csv-files can be concatenated using the following command:

cat day1.csv day2.csv day3.csv day4.csv day5.csv > week.csv

The whole process is automated with a shell-script presented in Appendix 4.

5.2.3 Feature extraction

In order to extract the features defined in Section 4.2 the csv-formatted flow data need

to be parsed. The parser presented in Appendix 5, checks the flow data using a pre-

defined time window and creates time series. An event in the time series represents the

flow information within the time set by the time window.

The parser is a modified version of Knuuti’s parser [55, pp. 63-65]. Knuuti’s parser

has been an excellent basis for the flow data parser. When Knuuti’s parser was created

to choose a specific IP-address range, the parser in Appendix 5 is taking into account all

the IPs in the flow data. In addition to the features collected by Knuuti the parser used in

this thesis collects information on the used services (SMTP, FTP, SSH, Telnet, DNS

and HTTP) as well.

As a result the parser creates time series of the 23 features described in Section 4.2.

These features are used as a basis in the analysis. The subsets of features are selected

from this list according to the categories discussed in Section 4.2 that are used in the

training and testing phases of the anomaly detection.

 52

6 RESULTS

The feature subsets are evaluated against each other and thus the evaluation is not done

against the prior art. One reason for this is because the prior art uses the dataset from

1998 and in this thesis the data from 1999 is used instead. Therefore the results are not

comparable with other studies such as KDD CUP 99 discussed in Section 3.3.1.

Expectation was that by using the feature subsets it is possible to detect attacks from

the specific attack categories within the data. In addition, the performance is expected to

be better with the feature subsets in comparison to the use of all the features. It was also

expected that the chosen time window size (60 seconds) will affect negatively to the

detection of attacks whose duration is less than the window size. For example, the

duration of most of the probing attacks is one to three seconds. It is therefore expected

that most of these short period attacks might not be detectable. The results in the

following sections are illustrated based on the data in Appendix 6.

6.1 Detected Attacks

Results of the IDS’ performance are discussed in the following sections. Taking into

account the expectations the results are divided in the following manner. In Sections

6.1.1 and 6.1.2 are the detection rate results of attacks from all of the five attack

categories in the testing data. In Sections 6.1.3 and 6.1.4 are the detection rate results of

all attacks from the selected attack categories. The selected attack categories are probing

attacks, denial of service attacks and attacks against the mail server.

In Sections 6.1.5, 6.1.6 and 6.1.7 are the detection rate results of attacks from each

selected attack categories using each feature subset.

6.1.1 Detection Rates of Attacks

Results on the detection rate of all the attacks against each computer with the feature

subsets are presented in Figure 6.1. The overall detection rates are between 10 and 30

percent. These results are more or less what were anticipated as most of the attacks are

short in duration and the attacks from U2R, R2L and Data categories are greater in

number when comparing them against probing and DoS attack amounts. The number of

attacks for Solaris is (49), for NT (39) and for Linux (23) (see Table 5.1 in Section

5.1.1).

 53

Figure 6.1 Detection rates of all attacks

Some of the interesting findings from the results in Figure 6.1 are that when comparing

operating systems and the detection rates with the feature subsets it is noticeable how

the attacks and their effect to the network traffic is significantly different. For example,

attacks against the Solaris computer are best detected using the probe feature subset but

NT probe subset’s performance is the worst. It seems that the detection rates with the

NT and Linux are opposite of what was achieved with the Solaris. The attacks against

NT and Linux are best detected using the Knuuti feature subset.

6.1.2 Detection Rates of Attacks longer than 60 Seconds in Duration

The detection rates of all attacks which were 60 seconds or longer in duration are

illustrated in Figure 6.2. The overall detection rate is far better when comparing them

with the detection rates of all the attacks in Figure 6.1. The number of attacks for Solaris

is (14), for NT (15) and for Linux (12) (see Table 5.1 in Section 5.1.1).

On average the results are between 30 to 50 percent. It was expected that when

taking into account only the attacks which duration is longer than 60 seconds, the

detection rate would also be better. Most of the attacks that are longer than 60 seconds

are from the DoS attack category but there are also attacks from all of the other

categories as well.

 54

Figure 6.2 Detection rates of attacks longer than 60 seconds in duration

From the Figure 6.2 it can be seen that the best performed feature subsets are the same

as was in Figure 6.1. However the difference between the feature subsets for NT and

Linux is not huge when detecting attacks that are longer than 60 seconds in duration.

When looking the result for the NT computer it seems that all and Knuuti feature

subsets are equally good in detecting attacks with a detection rate of 53%. The same is

valid with the attacks against the Linux computer. The all and Knuuti feature subsets

achieved both a detection rate of 42%

6.1.3 Detection Rates of Selected Attacks

When taken into account the fact that attacks from the U2R, R2L and Data categories

are not detectable using the defined features the results are somewhat different in

comparison to the results presented in Figures 6.1 and 6.2. The detection rates of attacks

from the DoS and Probe categories are summarised in Figure 6.3. The detection rates of

attacks from the selected categories longer than 60 seconds in duration are summarised

in Figure 6.4. The number of attacks for Solaris is (18), for NT (13) and for Linux (9)

(see Table 5.1 in Section 5.1.1).

Figure 6.3 Detection rates of selected attacks

 55

From the Figure 6.3 it can be seen that the detection rate of attacks against the Solaris

computer is better with every feature subset except with the probe features. It seems that

most of the attacks detected with the probe subset are from the three unlikely detectable

attack categories. The same can be said with the NT computer as the detection rate is

lower when only the selected attack categories are taken into account.

However the detection rates of attacks against the Linux computer are

approximately 10% higher than when taking into account all the five attack categories.

The biggest improvement was achieved with the Knuuti feature subset whose detection

rate rose almost 25% from the results in Figure 6.1.

6.1.4 Detection Rates of Selected Attacks longer than 60 Seconds in

Duration

Results shown in Figure 6.4 are containing only attacks from the selected attack

categories and in addition the ones that are longer than 60 seconds in duration. These

results should be according to the expectations. At first glance the results are better than

shown in Figure 6.1. However, the number of selected attacks for each computer is far

less than when taking into account all the attacks. The number of attacks for Solaris is

(1), for NT (4) and for Linux (5) (see Table 5.1 in Section 5.1.1).

When looking the results, it seems that the smaller feature subsets are able to detect

the only one selected attack for Solaris computer. It might be that, the effect of this

attack gets mixed up in the mass of other features and is not therefore detectable when

using multiple features.

Half of the attacks against the NT computer were detectable with each feature subset

except with the probe features. This result is interesting as one of the four attacks is

from the probe attack category. Therefore, this feature subset did not perform well.

When looking the results for the Linux computer, it seems that the DoS features are

not performing well. The all, Knuuti and mail server features on the other hand are

detecting 60% of the selected attacks. The most interesting results are achieved with the

probe features. This result is interesting as there were no probe attacks among the

selected attacks and therefore the ones that were detected, were from other categories.

Figure 6.4 Detection rates of selected attacks longer than 60 seconds in duration

 56

6.1.5 Probe Attacks

The results of detecting attacks from the Probe category are illustrated in Figure 6.5.

The detection rate of probe attacks against the Solaris computer are 100% with the

probe, DoS and mail server feature subsets. In total there was only a single probe attack

against the Solaris computer. However the probing lasted only one second which still

was detected against the expectation with the three mentioned feature subsets.

The probing attacks against the NT computer were almost completely passing the

detection. The attacks were not detected with the probe feature subset which was again

against the expectations. The other subsets were able to detect one of the probing

attacks which was the only one that lasted longer than 60 seconds.

With the Linux computer the results were against the expectations as the Knuuti

feature subset outperformed the probe subset. This shows again the difference between

operating systems and the attacks against them and how they affect to the features.

Figure 6.5 Detection rates of Probe attacks

6.1.6 DoS Attacks

The results of detecting attacks from the DoS category are illustrated in Figure 6.6. DoS

attacks against the Solaris computer are best detected using the DoS feature subset

which was an expected result. However, the detection rate with the probe and mail

server subsets is equally good.

The detection rate of DoS attacks against the NT computer is equal between the

feature subsets. It is interesting that for some reason the DoS feature subset is not better

than the other subsets. One reason for this result is that the DoS attacks against the NT

that were detected cause significant changes to most of the network traffic features

which then are also detectable with the other feature subsets.

The detection rate of DoS attacks against the Linux computer is completely against

the expected results. The DoS feature subset performs the worst in comparison to the

other subsets. It seems that the DoS attacks against Linux computers are causing

changes into totally different features than the attacks against the NT and Solaris.

 57

Figure 6.6 Detection rates of DoS attacks

6.1.7 Attacks against the mail server

The results of detecting attacks against the mail server are illustrated in Figure 6.7. It

should be noted that there were no attacks against the NT and therefore it is not shown

in the Figure 6.7.

The overall results are more or less according to the expectations as the smaller

feature subsets were able to detect the attacks better than when using all of the features

or the Knuuti features. When taking into account that when using fewer features the

processing requirements are also smaller than when using a larger set of information.

From this perspective the results were very good. The interesting thing though in these

results is that the probe and Dos feature subsets were as good as the mail server features

with the attacks against the Solaris computer. With the Linux computer all of the

subsets except the DoS subset performed equally well.

Figure 6.7 Detection rates of attacks against the mail server

 58

6.2 True Positives and False Positives

The rate of detected anomalies that corresponds to an actual attack (true positives) is

illustrated in Figure 6.8. It should be taken into account that even normal network traffic

contains changes that can be detected as an anomalous behaviour.

From Figure 6.8 it can be seen that the network traffic to the Linux computer the

local anomaly detection method detected more true positives than false positives with

the probe and mail server feature subsets. The probe feature subset detected from the

network traffic to the NT computer more false positives than true positives. With the

Linux computer the DoS feature subset has similar results.

Figure 6.8 Rates of true positives with feature subsets

In Figure 6.9, 6.10 and 6.11 is shown the number of false positives in comparison to the

number of true positives detected from the network traffics, to each computer with the

feature subsets. With the NT and Linux computers the results are according to the

expectations that when using more features it will also cause more false positives.

The Solaris however, gave the opposite results. With smaller feature subsets, the

number of false positives is far greater, than when using the all features or Knuuti

features.

As a conclusion it is clear that more investigation of differences between operating

systems and attacks against them need to be done in order to find out more suitable set

of features. Although there were huge differences in the results, they were still more or

less according to the expectations. The results can be thought of as an encouragement,

that it is possible to use smaller feature groups to detect specific attack categories with

less processing requirements.

 59

Figure 6.9 Comparison of the number of false and true positives that were detected

from the network traffic to the Solaris computer

Figure 6.10 Comparison of the number of false and true positives that were detected

from the network traffic to the NT computer

Figure 6.11 Comparison of the number of false and true positives that were detected

from the network traffic to the Linux computer

 60

7 CONCLUSIONS

The scope of this thesis was to find suitable subsets of features for the selected attack

categories within the Lincoln laboratory dataset. The feature subsets were formed using

prior knowledge from other IDS researches and in addition, the attacks and their effect

to the network traffic was analysed to decide which features should be used in the

anomaly detection.

The results (see Chapter 6) show that it is possible to use smaller subsets of features

to find intrusion in the data monitored. Taking into account all the factors which affect

to the results, the outcome was good, with 40-60% detection rate with most of the

feature subsets (see Figure 6.4). Also the number of false positives was reduced with the

smaller feature subsets with the Linux and NT computer. Although the results with the

Solaris computer were completely reversed, the results can still be taken as a good sign

that it is possible to ease the workload of the network administrator by detecting less

false positives.

However, as was already discussed in Chapter 6, more investigation is still needed

to achieve better results in anomaly detection. It is clear that in some cases the results

are completely against expectations. To find out why, more research on this area is

required. Also testing of the proposed feature subsets should be done using a smaller

time window. If, for example, the time window would be five seconds, it should be

theoretically possible to detect also the shorter attacks. Probing attacks are a good

example of such short duration attacks.

Furthermore, the anomaly detection tool was used in default settings and with only

one anomaly detection method. As the scope of this thesis was to evaluate the

performance of various feature subsets, it was therefore decided, that the method is not

relevant from the feature evaluation point of view and thus only one method was used.

It seems though, that the method also plays a significant role in the detection

performance. For example, the local anomaly detection method allows the user to define

the number of clusters and the thresholds to be used in the detection phase. By testing

different number of clusters for each attack categories, it might have been possible to

achieve better results.

Analysis of modern attacks is also required as the attacks are becoming more

sophisticated, but in the same time more difficult to find out. An excellent example of

this is the Stuxnet virus discussed in Section 2.1.2. Another criterion in finding modern

attacks is to use network traffic from the live networks. Especially when the IDS is

supposed to work in telecommunications networks the data should be also collected

from such network.

 61

REFERENCES

[1] Lassila, A. Sonera korvaa lopetettavat lankaverkot 3g:llä ja Digitan @450-

verkolla, HS.fi. [WWW]. [Cited 2011-02-27]. Available at:

http://www.hs.fi/talous/artikkeli/Sonera+korvaa+lopetettavat+lankaverkot+3gll%

C3%A4+ja+Digitan+450-verkolla/1135234793887 (in finnish)

[2] Lehto, T. Tietokone.fi. [WWW]. [Cited 2011-02-27]. Available at:

http://www.tietokone.fi/uutiset/2008/sonera_sulkee_19_000_adsl_liittymaa (in

finnish)

[3] L 22.12.2009/1186, Laki laajakaistarakentamisen tuesta haja-asutusalueilla. (Law

for supporting broadband development in rural areas). (in finnish)

[4] 3GPP TS 23.401 V10.2.1, 3rd Generation Partnership Project; Technical

Specification Group Services and Systems Aspect; General Packet Radio Service

(GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network

(E-UTRAN) access (Release 10). 3GPP, 2011. Technical Specification.

[5] ZTE, Global GSM Incremental Market Analysis. [WWW]. [Cited 2010-11-03].

Available at: http://wwwen.zte.com.cn/endata/magazine/ztetechnologies/2010/no4

[6] 3GPP TS 23.402 V9.4.0, 3rd Generation Partnership Project; Technical

Specification Groups Services and System Aspects; Architecture enhancements

for non-3GPP accesses (Release 9). 3GPP, 2010. Technical Specification.

[7] CERT Coordination Center, Vulnerability Discovery: Bridging the Gap Between

Analysis and Engineering. [PDF]. [Cited 2010-11-16]. Available at:

http://www.cert.org/archive/pdf/CERTCC_Vulnerability_Discovery.pdf

[8] McAfee Labs, McAfee Threats Report: Third Quarter 2010, [WWW]. [Cited

2010-11-19]. Available at:

http://www.mcafee.com/us/threat_center/white_paper.html

[9] Cisco-1, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update 2009-2014, [WWW]. [Cited 2010-12-15]. Available at:

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827

/white_paper_c11-520862.html

[10] Sundaram, A. An introduction to intrusion detection, Crossroads, Volume.2, Issue

4, pp. 3-7, April 1996

[11] NSA, National Security Agency. Defence in Depth. [PDF]. [Cited 2010-11-16].

Available at: http://www.nsa.gov/ia/_files/support/defenseindepth.pdf

 62

[12] Fogla, P., Lee, W. Evading network anomaly detection systems: formal reasoning

and practical techniques, Proceedings of the 13th ACM conference on Computer

and communications security, pp. 59-68, Alexandria, Virginia, USA, 2006

[13] Gates, C., Taylor, C., Challenging the anomaly detection paradigm: a provocative

discussion. In Proc. of ACM Workshop on New Security Paradigms 2006,

Schloss Dagstuhl, Germany, September 2006.

[14] Denning, D. E., An intrusion-detection model, IEEE Transactions on Software

Engineering, Volume 13, Issue 2, pp. 222-232, February 1987

[15] Javitz, H.S., Valdes, A. The SRI IDES Statistical Anomaly Detector, In

Proceedings of the IEEE Symposium on Security and Privacy, pp. 316-326, May

1991

[16] Chan, P., Mahoney, M., Arshad, M. A Machine Learning Approach to Anomaly

Detection, Department of Computer Sciences, Florida Institute of Technology,

Melbourne, 2003

[17] Wang, K., Stolfo, S. J. Anomalous Payload-based Intrusion Detection, Computer

Science Department, Columbia University, New York, 2004

[18] Das, K. Protocol Anomaly Detection for Network-based Intrusion Detection,

SANS Institute, GSEC Practical Assignment Version 1.2f, 2001

[19] Staniford-Chen, S. et al. GrIDS-A graph based intrusion detection system for

large networks, Department of Computre Science, University of California, Davis,

1996

[20] Fontugne, R., Hirotsu, T., Fukuda, K. An image processing approach to traffic

anomaly detection, Proceedings of the 4th Asian Conference on Internet

Engineering, pp. 17-26, November 2008, Pratunam, Bangkok, Thailand

[21] Thottan, M., Ji, C. Anomaly Detection in IP Networks. IEEE Trans. Signal

Processing (Special issue of Signal Processing in Networking), pp. 2191–2204,

August 2003

[22] Lee, W., Stolfo, S. J. Data Mining Approaches for Intrusion Detection,

Proceedings of the 7th USENIX Security Symposium, pp. 26-29, San Antonio,

Texas, January 1998

[23] Anderson, J.P. Computer Security Threat Monitoring and Surveillance. Technical

report, Fort Washington, Pennsylvania, April 1980

[24] Axelsson, S. Intrusion detection systems: a survey and taxonomy. Technical

report, Department of Computer Engineering, Chalmers University of

Technology, Göteborg, Sweden, March 2000

 63

[25] Snort, Snort homepage, [WWW]. [Cited 2010-11-02]. Available at:

http://www.snort.org/

[26] Sourcefire IPS, Sourcefire homepages, [WWW]. [Cited 2010-10-28]. Available

at: http://www.sourcefire.com/content/next-generation-intrusion-prevention-

system-ngips

[27] CERIAS, The center for education and research in information assurance and

security. Autonomous Agents for Intrusion Detection (AAFID). [WWW]. [Cited

2010-10-25]. Available at:

http://www.cerias.purdue.edu/about/history/coast/projects/aafid.php

[28] CIDF, Common intrusion detection framework project page. [WWW]. [Cited

2010-10-25]. Available at: http://gost.isi.edu/cidf/

[29] Abraham, A., Jain, R., Thomas, J., Han, S.Y. D-SCIDS: Distributed soft

computing intrusion detection system, In Journal of Network and Computer

Applications, Volume 30, Issue 1, pp. 81-98, January 2007

[30] SRI International, SRI International project page, [WWW]. [Cited 2010-10-27].

Available at: http://www.csl.sri.com/projects/

[31] Spitfire, Open channel foundation project page, [WWW]. [Cited 2010-10-27].

Available at: http://www.openchannelsoftware.com/projects/Spitfire/

[32] Massachusetts Institute of Technology (MIT), Lincoln laboratory, Cyber systems

and technology. [WWW]. [Cited 2010-11-11]. Available at:

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html

[33] Lu, W., Ghorbani, A.A. Network anomaly detection based on wavelet analysis,

EURASIP Journal on Advances in Signal Processing, pp.1-16, January 2009

[34] KDD cup 1999, KDD cup 1999 data distribution page, [WWW]. [Cited 2010-12-

07]. Available at: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[35] Schulze, H., Mochalski, K. Ipoque internet study 2008-2009. [PDF]. [Cited 2010-

11-11]. Available at: http://www.ipoque.com/userfiles/file/ipoque-Internet-Study-

08-09.pdf

[36] Cisco-2, Cisco IDS Sensor Deployment Considerations. [WWW]. [Cited 2010-

11-17]. Available at: http://www.ciscopress.com/articles/article.asp?p=25327

[37] Miettinen M., Halonen P., Hätönen K. Host-based intrusion detection for

advanced mobile devices, AINA ’06: proceedings of the 20th international

conference on advanced information networking and applications, Volume 2

(AINA’06). IEEE Computer Society, Washington, DC, pp. 72–76, 2006

 64

[38] Handley, C. M., Paxon, V. Network intrusion detection: Evasion, traffic

normalization, and end-to-end protocol semantics. In Proceedings of the 10th

USENIX Security Symposium, Washington, DC, August 2001

[39] Zainal, A., Maarof, M.A., Shamsuddin, S.M. Features Selection Using Rough-

PSO in Anomaly Intrusion Detection, Faculty of Computer Science and

Information Systems, Universiti Teknologi Malaysia

[40] Mukkamala, S., Sung, AH. Feature selection for intrusion detection using neural

networks and support vector machines. J Transport Res Board Natl Acad,

Transport Res Record No 1822 2003; 33-9.

[41] Chebrolu, S., Abraham, A., Thomas, JP. Feature Deduction and Ensemble Design

of Intrusion Detection Systmes, Journal of Computers and Security. Volume 24,

Issue 4, pp. 295-307, 2005

[42] Al-Sharafat, W.S., Naoum, R. Significant of features selection for detecting

network intrusions, Internet Technology and Secured Transactions, 2009. ICITST

2009, Volume, pp.1-6, 9-12 Nov. 2009

[43] Ben-Gal I. Bayesian Networks, in Ruggeri F., Faltin F. & Kenett R. Encyclopedia

of Statistics in Quality & Reliability, Wiley & Sons, 2007

[44] Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. Classification and

regression trees, Monterey, California, 1984

[45] Jolliffe, I.T. Principal Component Analysis, second edition, Springer-Verlag, New

York, 2002

[46] L 16.6.2004/516 Sähköisen viestinnän tietosuojalaki. (Data protection law). (in

finnish)

[47] Cisco-3, Cisco NetFlow. [WWW]. [Cited 2010-11-17]. Available at:

http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_hom

e.html.

[48] QoSient, Argus - Auditing Network Activity. [WWW]. [Cited 2010-11-17].

Available at: http://www.qosient.com/argus/.

[49] Case, J. et al., A Simple Network Management Protocol. RFC 1098. Network

Working Group, IETF, 1989..

[50] Höglund, A. An anomaly detection system for computer networks, Master’s

thesis, Helsinki University of Technology, 1997

 65

[51] Kent, K., Souppaya, M. Guide to Computer Security Log Management,

Recommendations of the National Institute of Standards and Technology (NIST),

September 2006

[52] Lakhina, A., Crovella, M., Diot, C. Mining anomalies using traffic feature

distributions, Proceedings of the 2005 conference on Applications, technologies,

architectures, and protocols for computer communications, pp. 22-26,

Philadelphia, Pennsylvania, USA, August 2005

[53] Dewaeke, G. et al. Extracting hidden anomalies using sketch and non gaussian

multiresolution statistical detection procedures, LSAD '07, 2007. pp. 145-152

[54] Gorton, D. Extending Intrusion Detection with Alert Correlation and Intrusion

Tolerance, Thesis for the Degree of Licentiate of Engineering, Chalmers

University of Technology, Göteborg, Sweden 2003

[55] Knuuti, O. Intrusion detection system comparison in large IP-networks, Master's

thesis, Tampere University of Technology, 2009

[56] Sung, AH., Mukkala, S. The Feature Selection and Intrusion Detection Problems,

Proceedings of Advances in Computer Science – ASIAN 2004: Higher-Level

Decision Making, 9th Asian Computing Science Conference, Volume 3321, pp.

468-482, 2004

[57] Kabiri, P., Zargar, G. R. Category-Based Selection of Effective Parameters for

Intrusion Detection, International Journal of Computer Science and Network

Security (IJCSNS), Volume 9, No. 9, pp. 181-188, 2009

[58] Lin, Y., Fang, B.-X., Guo, L., Chen, Y. TCM-KNN Algorithm for Supervised

Network Intrusion Detection, Intelligence and Security Informatics, In

proceedings of Pacific Asia Workshop (PAISI 2007), LNCS 4430, pp. 141-151,

Chengdu, China, April 2007

[59] Lawrence Berkeley National Laboratory, Bro Intrusion Detection System.

[WWW]. [Cited 2011-02-27]. Available at: http://bro-ids.org/

[60] Zargar, G.R., Kabiri, P. Identification of effective network features for probing

attack detection, Networked Digital Technologies, 2009. NDT '09. First

International Conference on Networked Digital Technologies (NDT 2009), VSB-

Technical University of Ostrava, Czech Republic, pp. 405-410, 2009

[61] Zargar, G. R., Kabiri, P. Identification of Effective Network Features to Detect

Smurf Attacks, Proceedings of 2009 Student Conference on Research and

Development (SCOReD 2009), pp. 49-52, UPM Serdang, Malaysia, 2009

[62] Carrascal, A., Couchet, J., Ferreira, E., Manrique, D. Anomaly Detection using

 66

prior knowledge: application to TCP/IP traffic, In Artificial Intelligence in Theory

and Practice, pp. 139-148, 2006

[63] Lee, D. C. et al. Fast Traffic Anomalies Detection Using SNMP MIB Correlation

Analysis. In proceedings of International Conference on Advanced

Communication Technology (ICACT), 2009

[64] Cisco-4, Cisco SNMP object navigator. [WWW]. [Cited 2010-10-19]. Available

at: http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en

[65] Schmidt, A-D. et al. Monitoring smart phones for anomaly detection, Mobile

Networks and Applications, Volume 14, Issue.1, pp. 92-106, February 2009

[66] Huang, Y.-A. et al. Cross-Feature Analysis for Detecting Ad-Hoc Routing

Anomalies. Providence RI, In proceedings of The 23rd International Conference

on Distributed Computing Systems (ICDCS), 2003

[67] Huang, Y., Lee, W. A Cooperative Intrusion Detection System for Ad Hoc

Networks, In Proceedings of the ACM Workshop on Security of Ad Hoc and

Sensor Networks (SASN '03), Fairfax VA, October 2003

[68] Wang, X., Lin, T.-L., Wong, J. Feature Selection in Intrusion Detection System

over Mobile Ad hoc Network, Technical Report, Computer Science Department,

Iowa State University, 2005

[69] Depren, O. et al. An intelligent intrusion detection system (IDS) for anomaly and

misuse detection in computer networks. 4, Elsevier, Expert Systems with

Applications, Vol. 29, pp. 713-722, November 2005

[70] CERT Advisory CA-97.28. Teardrop Land. CERT, December 1997

[71] CERT Advisory CA-96.26. Ping of Death. CERT, December 1996

[72] Targa3, Targa3 source code. [WWW]. [Cited 2010-10-19]. Available at:

http://mixter.void.ru/targa3.c.

[73] CERT Advisory CA-98.01. Smurf. CERT, January 1998

[74] CERT Advisory CA-96.21. TCP SYN flooding and IP spoofing attack. CERT,

November 1996

[75] Jung, J., Krishnamurthy, B., Rabinovich, M. Flash Crowds and Denial of Service

Attacks: Characterization and Implications for CDNs and Web Sites. Honolulu,

AT&T Labs-Research, 2002

 67

[76] Etutorials.org, TCP Port Scanning. [WWW]. [Cited 2011-01-03]. Available at:

http://etutorials.org/Networking/network+security+assessment/Chapter+4.+IP+Ne

twork+Scanning/4.2+TCP+Port+Scanning/

[77] CERT Advisory CA-95.06. Security Administrator Tool for Analyzing Networks

(SATAN). CERT, April, 1995

[78] Maselli, G., Deri, L., Suin, S. Design and Implementation of an Anomaly

Detection System: an Empirical Approach. In proceedings of Terena Networking

Conference, 2003

[79] Kumpulainen, P., Hätönen, K. Anomaly Detection Algorithm Test Bench for

Mobile Network Management, In proceedings of MathWorks Matlab User

Conference Nordic, Stockholm, November, 2008

[80] Kohonen, T. The Self-Organizing Map, Proc. IEEE, Volume 78, No. 9, pp. 1464-

1480, 1990

[81] MacQueen, J. B. Some Methods for classification and Analysis of Multivariate

Observations, Proceedings of 5-th Berkeley Symposium on Mathematical

Statistics and Probability, pp. 281-297, Berkeley, University of California

Press,1967

[82] Kumpulainen, P., Hätönen, K. Local Anomaly Detection for Network System Log

Monitoring, Proceedings of the 10th International Conference on Engineering

Applications of Neural Networks, pp. 34-44, 2007

[83] Kumpulainen, P., Hätönen, K. Local anomaly detection for mobile network

monitoring, Information Sciences, Elsevier. Volume 178, Issue (No.) 20, pp.

3840-3859, 15 October 2008

 68

APPENDIX 1 NETWORK TRAFFIC HEADER FIELDS

No. Feature Description

1 Protocol Type of Protocol

2 Frame_lenght Length of Frame

3 Capture_lenght Length of Capture

4 Frame_IS_marked Frame IS Marked

5 Coloring_rule_name Coloring Rule name

6 Ethernet_type Type of Ethernet Protocol

7 Ver_IP IP Version

8 Header_lenght_IP IP Header length

9 Differentiated_S Differentiated Service

10 IP_Total_Lenght IP total length

11 Identification_IP Identification IP

12 MF_Flag_IP More Fragment flag

13 DF_Flag_IP Don’t Fragment flag

14 Fragmentation_offset_IP Fragmentation offset IP

15 Time_to_live_IP Time to live IP

16 Protocol_no Protocol number

17 Src_port Source Port

18 Dst_port Destination port

19 Stream_index Stream Index number

20 Sequence_number Sequence number

21 Ack_number Acknowledgment number

22 Cwr_flag Cwr Flag (status flag of the connection)

23 Ecn_echo_flag Ecn Echo flag (status flag of the connection)

24 Urgent_flag Urgent flag (status flag of the connection)

25 Ack_flag Acknowledgment flag(status flag of the connection)

26 Psh_flag push flag (status flag of the connection)

27 Rst_flag Reset flag (status flag of the connection)

28 Syn_flag Syn flag (status flag of the connection)

29 Fin_flag Finish flag (status flag of the connection)

30 ICMP_Type
specifies the format of the ICMP message such as: (8=echo
request and 0=echo reply)

31 ICMP_code Further qualifies the ICMP message

32 ICMP_data ICMP data

 69

APPENDIX 2 ATTACKS IN LINCOLN DATA 1999

Category of attacks Types of attacks [32]

Probe ipsweep, nmap, portsweep, satan

Denial of Service (DoS) back, land, Neptune, pod, smurf, teardrop

User to root (U2R) buffer_overflow, loadmodule, perl, rootkit

Remote to Local (R2L) ftp_write, guess_passwd, impat, multihop, phf, spy, warezclient, warezmaster

Type of attack Description [32]

back Denial of service attack against apache webserver where a client requests a URL

containing many backslashes.

dict Guess passwords for a valid user using simple variants of the account name over

a telnet connection.

eject Buffer overflow using eject program on Solaris. Leads to a user->root transition

if successful.

ffb Buffer overflow using the ffbconfig UNIX system command leads to root shell

format Buffer overflow using the fdformat UNIX system command leads to root shell

ftp-write Remote FTP user creates .rhost file in world writable anonymous FTP directory

and obtains local login.

guest Try to guess password via telnet for guest account.

imap Remote buffer overflow using imap port leads to root shell

ipsweep Surveillance sweep performing either a port sweep or ping on multiple host addresses.

land Denial of service where a remote host is sent a UDP packet with the same source

and destination

loadmodule Non-stealthy loadmodule attack which resets IFS for a normal user and creates

a root shell

multihop Multi-day scenario in which a user first breaks into one machine

neptune Syn flood denial of service on one or more ports.

nmap Network mapping using the nmap tool. Mode of exploring network will vary—options

include SYN

perlmagic Perl attack which sets the user id to root in a perl script and creates a root shell

phf Exploitable CGI script which allows a client to execute arbitrary commands on a machine

with a misconfigured web server.

pod Denial of service ping of death

portsweep Surveillance sweep through many ports to determine which services are supported

on a single host.

rootkit Multi-day scenario where a user installs one or more components of a rootkit

satan Network probing tool which looks for well-known weaknesses. Operates at three different

levels. Level 0 is light

smurf Denial of service icmp echo reply flood.

spy Multi-day scenario in which a user breaks into a machine with the purpose of finding

important information where the user tries to avoid detection. Uses several different

exploit methods to gain access.

syslog Denial of service for the syslog service connects to port 514 with unresolvable source ip.

teardrop Denial of service where mis-fragmented UDP packets cause some systems to reboot.

warez User logs into anonymous FTP site and creates a hidden directory.

warezclient Users downloading illegal software which was previously posted via anonymous FTP

by the warezmaster.

warezmaster Anonymous FTP upload of Warez (usually illegal copies of copywrited software)

onto FTP server

 70

APPENDIX 3 COMPARISON OF KDD CUP 99 STUDIES

Method No. features Normal Probe DoS U2R R2L DR

SVDF 6 - - - - - 88,72

MARS 6 - - - - - 92,80

LGP 6 - - - - - 87,71

Rough set 6 - - - - - 89,25

Rough-PSO 6 - - - - - 93,41

SVM 41 99,55 99,70 99,25 99,87 99,78 99,63

SVM (PBMR) 31 99,51 99,67 99,22 99,87 99,78 99,61

SVM (SVDFMR) 23 99,55 99,71 99,20 99,87 99,78 99,62

BN 41 99,57 99,43 99,69 64,00 99,11 92,36

BN 19 99,57 96,71 99,02 56,00 97,87 89,83

BN 17 99,64 98,57 98,16 60,00 98,93 91,06

BN 12 98,78 99,57 98,95 48,00 98,93 88,85

CART 41 99,64 97,85 99,47 48,00 90,58 87,11

CART 19 95,50 96,85 94,31 84,00 97,69 93,67

CART 17 99,64 100,00 99,97 72,00 96,62 93,65

CART 12 100,00 97,71 85,34 64,00 95,56 88,52

BN+CART 41 99,71 99,85 99,93 72,00 99,47 94,19

BN+CART 17 99,64 100,00 100,00 72,00 99,29 94,19

BN+CART 12 100,00 99,86 99,98 80,00 99,47 95,86

 71

APPENDIX 4 TCPDUMP2SOM.SH

#!/bin/bash

echo "---"

echo "Filtering tcpdump files from all non-IP-based traffic"

echo "---"

if [-a ip_*.tcpdump]; then

 echo "---"

 echo "Tcpdump files already filtered"

 echo "---"

else

 for i in *.tcpdump; do

 tcpdump -r $i ip -w ip_$i;

 done

fi

echo "---"

echo "Converting tcpdump files: tcpdump > Argus data > csv"

echo "---"

if [-a *.csv]; then

 echo "---"

 echo "Files already converted"

 echo "---"

else

 COUNT=1;

 for i in ip*.tcpdump; do

 echo "Converting file $i"

 argus -w - -r $i | ra -u -nr - -c ";" -s stime proto saddr sport spkts sbytes daddr dport dpkts dbytes >

./$COUNT.csv;

 echo "File ./$COUNT.csv created"

 let COUNT=COUNT+1;

 done

fi

echo "---"

echo "Creating timeseries"

echo "---"

if [-a week.csv]; then

 echo "---"

 echo "Timeseries already created"

 echo "---"

else

 cat 1.csv 2.csv 3.csv 4.csv 5.csv > week.csv

 echo `./parser.py > ./SOM.csv`

fi

echo "DONE"

 72

APPENDIX 5 PARSER.PY

#!/usr/bin/env python

Parses argus data for SOM

Original parser (c)Olli Knuuti & Mika Tuomi, v. 5.3.2009

Modified by Antti Niemela, 2011 Nokia Siemens Networks

Modified parser (c)Nokia Siemens Networks, 2011

Input format CSV-file:

time;protocol;source-ip;source-port;sent-packets;sent-bytes;dest-ip;dest-port;received-packets;received-bytes

920898003.071811;udp;192.168.1.1;520;1;66;224.0.0.9;520;0;0

ra function:

ra -u -nr - -c ";" -s stime proto saddr sport spkts sbytes daddr dport dpkts dbytes

from pprint import pprint

import operator

import gzip

import time

from glob import glob

def read_ra_sorted(filename) :

 lines = open(filename).readlines()

 lines.sort()

 for line in lines :

 line = line.strip().split(';')

 # Checking if the flow data contains correct number of features in each line

 # By default the number of features is 10

 if len(line) == 10 :

 #print line # For debuggin, will print all the lines used in the timeseries

 yield line

def dump_ip_list(ip_list, starttime) :

format =

'%(ip)s;%(src_sessions)i;%(unique_src_ip_count)i;%(dst_sessions)i;%(unique_dst_ip_count)i;%(port_below_1k)i;%(

unique_port_below_1k_count)i;%(port_above_1k)i;%(unique_port_above_1k_count)i;%(sent_packets)i;%(received_

packets)i;%(sent_bytes)i;%(received_bytes)i;%(tcp)i;%(udp)i;%(icmp)i;%(smtp)i;%(ftp)i;%(http)i;%(dns)i;%(telnet)i;%

(ssh)i;%(time)s;'

 strtime = time.strftime('%Y%m%d;%H:%M:%S', time.gmtime(starttime))

 for ip in ip_list :

 ip_list[ip]['ip'] = ip

 ip_list[ip]['time'] = strtime

 ip_list[ip]['unique_dst_ip_count'] = len(ip_list[ip]['unique_dst_ip'])

 ip_list[ip]['unique_src_ip_count'] = len(ip_list[ip]['unique_src_ip'])

 ip_list[ip]['unique_port_below_1k_count'] = len(ip_list[ip]['unique_port_below_1k'])

 ip_list[ip]['unique_port_above_1k_count'] = len(ip_list[ip]['unique_port_above_1k'])

 print format % ip_list[ip]

 #pprint(ip_list[ip])

def main() :

 # Define the timewindow for the timeseries, default value is 5 seconds.

 timewindow = 5

 # An Ip-filter can be set here. By default all IPs are analysed.

 ipfilter = ''

 # Open flow data files that are ending with .csv in the specified folder.

 files = glob('./*.csv')

 #print files # Debugging, to check which files are used in timeseries creation

 if len(files) == 0 :

 return

 ip_list = {}

 starttime = None

 73

 for file in files :

 for event in read_ra_sorted(file) :

 stime,protocol,src_ip,src_port,src_packets,src_bytes,dst_ip,dst_port,dst_packets,dst_bytes = event

 ftime = int(float(stime) / timewindow) * timewindow

 # Creating the "service" variable for the counters

 service = ''

 # Checking wether the used service protocol is (SMTP, FTP, HTTP..)

 # Check if the service protocol is FTP = port:21

 if int(src_port) == 21 or int(dst_port) == 21 :

service = 'ftp'

 # Check if the service protocol is SSH = port:22

 if int(src_port) == 22 or int(dst_port) == 22 :

 service = 'ssh'

 # Check if the service protocol is Telnet = port:23

 if int(src_port) == 23 or int(dst_port) == 23 :

 service = 'telnet'

 # Check if the service protocol is SMTP = port:25

 if int(src_port) == 25 or int(dst_port) == 25 :

 service = 'smtp'

 # Check if the service protocol is DNS = port:53

 if int(src_port) == 53 or int(dst_port) == 53 :

 service = 'dns'

 # Check if the service protocol is HTTP = port:80

 if int(src_port) == 80 or int(dst_port) == 80 :

 service = 'http'

 if ftime != starttime :

 if (starttime != None) :

 #print '-' * 50 # debug print between time windows

 dump_ip_list(ip_list, starttime)

 ip_list = {}

 starttime = ftime

 for ip,port,packets,bytes in ((src_ip,src_port,src_packets,src_bytes), (dst_ip,dst_port,dst_packets,dst_bytes)) :

 # Checking if IP-filter is used. All the IPs are analysed if the default value of ipfilter is used.

 if ip.startswith(ipfilter) :

 # If IP not examined before within the timeframe, create DB for it.

 if ip not in ip_list :

 ip_list[ip] = {

 'unique_dst_ip' : {},

 'unique_src_ip' : {},

 'unique_port_below_1k' : {},

 'unique_port_above_1k' : {},

 'port_below_1k' : 0,

 'port_above_1k' : 0,

 'sent_packets' : 0,

 'sent_bytes' : 0,

 'received_packets' : 0,

 'received_bytes' : 0,

 'src_sessions' : 0,

 'dst_sessions' : 0,

 'tcp' : 0,

 'udp' : 0,

 'icmp' : 0,

 'smtp' : 0,

 'ftp' : 0,

 'http' : 0,

 'dns' : 0,

 'telnet' : 0,

 'ssh' : 0

 }

 74

 # Increase used transportation protocol counter by 1

 if protocol in ip_list[ip] :

 ip_list[ip][protocol] += 1

 # Increase used service counter by 1

 if service in ip_list[ip] :

 ip_list[ip][service] +=1

 # Just to convert string ports to zero

 try :

 port = int(port)

 except :

 port = 0

 # Check if the used port is equal or below 1024

 if int(port) <= 1024 :

 ip_list[ip]['port_below_1k'] += 1

 ip_list[ip]['unique_port_below_1k'][port] = ip_list[ip]['unique_port_below_1k'].get(port, 0) + 1

 # Check if the used port is above 1024

 if int(port) > 1024 :

 ip_list[ip]['port_above_1k'] += 1

 ip_list[ip]['unique_port_above_1k'][port] = ip_list[ip]['unique_port_above_1k'].get(port, 0) + 1

 # If the IP under examination is the source address in the flow:

 # Increase the counters

 if ip is src_ip :

 ip_list[ip]['src_sessions'] += 1

 ip_list[ip]['sent_packets'] += int(src_packets)

 ip_list[ip]['sent_bytes'] += int(src_bytes)

 ip_list[ip]['received_packets'] += int(dst_packets)

 ip_list[ip]['received_bytes'] += int(dst_bytes)

 ip_list[ip]['unique_dst_ip'][dst_ip] = ip_list[ip]['unique_dst_ip'].get(dst_ip, 0) + 1

 # If the IP under examination is the destination address in the flow:

 # Increase the counters

 if ip is dst_ip :

 ip_list[ip]['dst_sessions'] += 1

 ip_list[ip]['received_packets'] += int(src_packets)

 ip_list[ip]['received_bytes'] += int(src_bytes)

 ip_list[ip]['sent_packets'] += int(dst_packets)

 ip_list[ip]['sent_bytes'] += int(dst_bytes)

 ip_list[ip]['unique_src_ip'][src_ip] = ip_list[ip]['unique_src_ip'].get(src_ip, 0) + 1

 dump_ip_list(ip_list, starttime)

if __name__ == '__main__': main()

 75

APPENDIX 6 FEATURE SUBSET TABLES

Detection rate of all attacks

Solaris, 172.16.112.50

Metric All Knuuti Probe DoS Mail server

DR Attacks All 8 8 39 10 22

DR Attacks >60s 7 7 67 14 43

DR DoS All 12 12 18 18 18

DR DoS >60s 0 0 100 100 100

DR Probe All 0 0 100 100 100

DR Probe >60s 0 0 0 0 0

DR Mail server All 0 0 100 100 100

DR Mail server >60s 0 0 100 100 100

 NT, 172.16.112.100

Metric All Knuuti Probe DoS Mail server

DR Attacks All 21 26 3 21 26

DR Attacks >60s 53 53 7 33 47

DR DoS All 25 25 0 25 25

DR DoS >60s 33 33 0 33 33

DR Probe All 11 0 0 11 11

DR Probe >60s 100 0 0 100 100

DR Mail server All 0 0 0 0 0

DR Mail server >60s 0 0 0 0 0

 Linux, 172.16.114.50

Metric All Knuuti Probe DoS Mail server

DR Attacks All 30 43 17 13 26

DR Attacks >60s 42 42 17 8 25

DR DoS All 50 50 33 17 50

DR DoS >60s 60 60 40 25 60

DR Probe All 33 100 67 33 67

DR Probe >60s 0 0 0 0 0

DR Mail server All 50 50 50 0 50

DR Mail server >60s 100 100 100 0 100

 76

Detection rate of selected attacks

Solaris, 172.16.112.50

Metric All Knuuti Probe DoS Mail server

DR Attacks All 11 11 22 22 28

DR Attacks >60s 0 0 100 100 100

 NT, 172.16.112.100

Metric All Knuuti Probe DoS Mail server

DR Attacks All 15 15 0 15 15

DR Attacks >60s 50 50 0 50 50

Linux, 172.16.114.50

Metric All Knuuti Probe DoS Mail server

DR Attacks All 44 67 44 22 56

DR Attacks >60s 60 60 40 20 60

Number of false and true positives

Solaris All Knuuti Probe DoS Mail server

False Positives 14 15 47 39 55

True Positives 4 4 17 8 16

NT All Knuuti Probe DoS Mail server

False Positives 42 69 12 49 52

True Positives 23 26 1 23 22

 Linux All Knuuti Probe DoS Mail server

False Positives 51 51 19 42 22

True Positives 24 24 17 3 21

